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NGS1 recommends that MV2 be published so it can undergo
review from the cryptographic community. ... MV2 presents
several specific and advantageous characteristics:

1. MV2 can complement and co-exist with well-known and
proven encryption technologies; most of the commercial-
ly valuable benefits can be achieved without changing ex-
isting corporate encryption technologies and policies.

2. MV2 ”one-time” encryption produces unique, tamper-
proof ciphertext even when encrypting the same plain-
text repeatedly using the same key.

3. MV2’s ability to require the presence of 3 or more files to
read encrypted messages; this provides substantial flexi-
bility and savings when moving or securing data.

NGS Consulting

1NGS (Next Generation Security Software Limited) is the world lead-
er in the discovery and publication of computer security vulnerabilities,
and in this capacity work as advisers to CESG, the UK Government’s
National Technical Authority for Information Assurance.
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Introduction

This book describes the cryptographic algorithm MV2
which is a stochastic cipher. Its most distinctive feature is
that the generated ciphertext is divided into two or more
parts. In addition it is possible to vary the length of those
generated parts. This allows to use the MV2 algorithm:

1) as a symmetrical cryptographic algorithm with 128bit,
256bit, 512bit, 1024bit, 2048bit, 4096bit keys;

2) as a way to split a ciphertext into parts with differ-
ent lengths to organize several channels for cifered data
transfer.

If necessary, the key length can be extended to 53890 bit.
These distinctive features are essential in business pro-

cesses where to give a positive result some control parameters
are required that the MV2 is able to provide. In particu-
lar, the MV2 in combination with asymmetrical cryptographic
algorithms can produce new symmetrical-asymmetrical algo-
rithms that allow instant encoding of large volumes of infor-
mation using two keys simultaneously (the one of symmetri-
cal system and the public key of the asymmetrical system); or
encode and sign the documents in a single round; or encode
using two keys and sign simultaneously.

Division of ciphertexts into several channels means multi-
channel encryption which provides additional degrees of free-
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Introduction 9

dom for control parameters that can be used in various appli-
cations.

There are three rather general models of building multi-
channel encryption systems:

1. systems where a number of short length ciphertexts
are enciphered with theoretically strong system or
steganogrphically concealed.

2. systems where information is partially sent to the recip-
ient (e.g. for storage) and the rest is not sent anywhere.
In this case the keeper of the stored information cannot
use it or transfer it to the third party.

3. systems where information is spatially separated by
using other data channels. This increases resistance
against unauthorized reading of messages.

The algorithm can be used to develop new protocols for
comprehensive fraud protection systems in trade, multimedia,
document management and a number of other applications.



Chapter 1

Harmed texts

1.1 Sense of texts

and information theory

A French physicist L.Brillouin [6] discovered interrelation
between information and physical entropy. This interrelation
was laid in the very foundation of information theory when
C.Shannon proposed to adapt a stochastic entropy function
from statistical thermodynamics to calculate the quantity of
information.

The entropy function can also be used to study a sensible
text. Symbols in a sensible text have different probability of
their appearance. They occur not chaotically but are orga-
nized according to the rules of word formation and usage of
words in expressions. However, any texts are described not
only by entropic characteristics but also by sense and value
of information they contain. C.Shannon simplified his model
intentionally: information theory does not consider the prop-
erties of information transferred. These properties concern
only transmission and receiving parties. Shannon’s informa-
tion theory gives a quantitative measure of the transferred
information without considering its sense and value.

10



Chapter 1. Harmed texts 11

Hereafter we shall use the term ”sense”. Therefore we will
give an encyclopedic definition of this term.

In a ”sense – text” model the term ”sense” describes the
global content of a statement.

D e f i n i t i o n 1.1 The term ”sense” can mean an in-
tegrated content of any statement that is not reduced to the
meaning of its components but defines that meaning itself.

Any statement contains notional words that have sense
and auxiliary words. It depends on the sense of a sentence that
any of its parts (subject, predicate, adverbial modifier of place
and time, object, more rarely - adjective, and sometimes even
preposition) become notional words. To better understand
this definition we will use an example.

Example 1.1 The phrase ”I go to the cinema” may have several

senses and different key words for each of them. If the sense is who goes

to the cinema then the key word is ”I” and the phrase ”go to the cinema”

has no sense, etc.

Information theory does not estimate the sense and value
of information as these properties are subjective. Information
theory only enables to estimate the extent to which a text
is ordered or how distant it is from absolute chaos when all
letters are equally likely to occur and the text is a senseless
set of symbols.

The more different the probability for each letter is and
the stronger intersymbol influence over adjacent letters is the
more a text is ordered. In the mean time, the quantity of
information representing this order will be equal to the de-
crease of the text entropy as compared to its maximum value
representing the absence of order in the text, i.e. equal proba-
bilities for adjacent letters. Methods suggested by C. Shannon
to calculate the quantity of information enable to determine
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the ratio between the quantity of predictable information (i.e.
that is formed according to certain rules) and of unexpected
information that cannot be predicted. Shannon defined infor-
mation contained in the rules as redundant because knowing
the rules of making up messages allows predicting probabili-
ties of letters before they are actually transmitted.

E.g., for the English language with the number of letters
N = 26 this value is R = log 26 = 4, 7 bits per letter. It
is the maximum entropy of particular symbols. But because
probabilities of particular symbols are different, in reality the
language entropy per symbol of message M is r = H(M)/L,
where H(M) means message uncertainity, and L - message
length in symbols. In a number of researches [8] the value of
the entropy per symbol is defined for rather long messages of
the English language, which is 1,3 bits per letter.

The value B = R − r is usually called redundancy in lan-
guage. Redundancy in the English language is about 3,4 bits
per letter.

In a simplified model of the English language without all
punctuation marks, spaces and numbers redundancy for the
8 bit letter image in the ASCII table for r = 1, 3 will be 6,7
bits per letter!

Encryption system allows to transform the alphabet of a
source text into that of a ciphertext and vice versa without
changing the sense of message. The purpose is to conceal the
sense in an alphabet of the plain language. However, redun-
dancy in language causes certain information about the source
text being kept in the ciphertext. This and a number of sta-
tistical regularities allow a cryptanalyst reading ciphertexts
without knowing the key or even defining this key. C.Shannon
demonstrated that if an encryption system completely elim-
inates redundancy in a source text, it becomes in principle
impossible to restore a source text from a ciphertext.
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1.2 Cryptanalytic attacks.

Idea of harmed texts

Consider a cipher defined as (E, E−1, M, Y, K). Here M, Y
mean a plaintext and a ciphertext respectively, E, E−1 are
encryption and decryption transformations, and K is a secret
key. The most common situations for cryptanalysis can be
reduced to the following cases:

1. One or several ciphertexts Y are available. The objec-
tive of cryptanalysis is to define E (cipher type) and
find E, E−1, M .

2. One or several pairs (M, Y ) are available. Define cipher
type E or E−1 and find K.

3. Cipher type E or E−1 and one or several ciphertexts Y
are available. Find M or K, M .

4. Cipher type E or E−1 and one or several pairs (M, Y )
are available. Find K.

5. E, E−1, one ciphertext Y or pairs (M, Y ), a transforma-
tion form E(., K) are kavailable, but K and E−1(., K)
are unavailable. Find K. Such formulation is typical
for public-key systems.

Y ′ = E1(M, K)
Y ′′ = E2(M, K),

where the mappings E1 and E2 are not injective, but are con-
nected as follows: there is such a mapping E−1

12 , that for any
source text M and key K the following holds:

M = E−1
12 (Y ′, Y ′′, K).
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Let Y ′′ be concealed from a cryptanalyst due to transmis-
sion via another channel, or any stehanographical methods
that are unknown to a cryptanalyst, or be encrypted by a
theoretically strong system if Y ′′ has a short length.

Apart from greater key space caused by cryptographic di-
vision, a cryptanalyst faces a task of enumeration to define
the missing part of Y ′′. It might be a very time-consuming
due to the fact that the length of Y ′′ may be greater than the
length of K.

This idea can be developed by introducing m ciphertexts
and assuming that:

Y ′ = E1(M, K)
Y ′′ = E2(M, K)
. . .
Y ′(m) = Em(M, K);
M = E−1

1...m(Y ′, Y ′′, ...Y ′(m), K).

The described ciphertexts will be considered as Y ′(i)

harmed texts, if each of them has no sense in an alphabet
of a ciphertext.

1.3 Concept of harmed texts

Let there be a message M with the length L0 and the
sense S(M). Let this message be written in a language with an
alphabet A, with redundancy in language BA and respective
redundancy in message

B(M) = BAL0 =

(
log N − H(M)

L0

)
· L0.

Let an ideal archiver be abailable that allows to eliminate
all redundancy and generate M ′ – a message with the minimal
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length Lmin without losing the sense, i.e.:

S(M ′) = S(M).

We note here that any archiver compresses a message by
making its length shorter, but keeps its sense unchanged con-
verting an alphabet of a plain message into an alphabet of an
archiver, like an ordinary information encoder does. Actually,
any archiver operates beyond the ideal. That is why a text
M ′′ it generates has a length that is greater than Lmin without
losing the sense of the plain message:

S(M) = S(M). (1.1)

It is evident that any further attempts to compress the
message will cause distortion of its sense and, therefore, for
any text M∗ with a length L < Lmin the equality (1.1) will
not be observed:

S(M∗) �= S(M).

This effect takes place because the further compression of
text doesn’t occurs by eliminating redundancy in letter codes
but by deformation of inredundant letter codes. Herein under
deformation of letters we understand further shortening of
length of letter codes beyond their information irredundancy.

D e f i n i t i o n 1.2 We will consider a text as harmed if
it was generated with further deformation of irredundant letter
codes.

Thus, the necessary and sufficient condition for a text to
be harmed with losing its sense is shortening the length of its
letter codes beyond their irredundancy. As a result, a harmed
text is shorter than a source text and does not have the sense
of a source text.
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It follows from the definition that the whole variaty of
texts generated from a source text by a number of transfor-
mations consists of two disjoint subsets: harmed texts and
texts that have the sense of a source text. Please notice that
all ciphertexts have the sense of a source text in an alpha-
bet of a ciphertext, all compressed texts have the sense of a
source text, and all primitively transformed source texts can
retain the sense of a source text by throwing out particular
words or symbols. Therefore, all these transformed texts are
not harmed.

There are many methods to examine if a text is sensible
position of redundancy in language. In contrast to attempts
of measuring the sense we come to the idea of mere verification
of whether the sense is present ot not, possibly with measuring
probability, stating

P (S(M)) + Q(S(M)) = 1,

where P and Q are respective probabilities of presence and
absence of the sense. It results in the need to develop an
algorithm that would harm the sense in source texts or ci-
phertext (harming algorithm), and where P (S(M)) would be
close to 0. So, we shall not touch on problems of measuring
the sense or defining signs of present a sense; we will be in-
terested in a sense destruction algorithm with a probabilistic
measure of its presence or absence.

This algorithm may have its own key which additionally
increases the key space.

D e f i n i t i o n 1.3 A cyclic algorithm that implies ran-
dom substitution of bit representation of each symbol of a
source text by a tuple of a smaller or equal number of bits
with their further concatenation to obtain a harmed text shall
be a universal damage algorithm denoted by Cm, where m is
the number of rounds.
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It follows from the definition that during the harming of
text codes symbols are replaced by tuples of different length.
The advantage of such approach is its universality. Irrespec-
tive of the nature of a source text (texts in natural languages,
ciphertexts, texts of program files, etc.) this approach allows
destroying a sense and verify its absence after the harming
algorithm Cm was executed during m rounds.

As further shortening of a text beyond irredundancy leads
to distortion of sense in the message, additional information
is required to restore the text from a harmed text. We shall
call this additional information a harm.

A harm restores destroyed transformation injectiveness af-
ter irregular substitutions in a given harmed text. We shall
only touch on such rules of harming that do not allow for
a a source text to be restored (possibly, except for attempts
of enumeration) if only harmed texts or harms are available.
We shall be interested in such rules of harming that require
knowledge of all harmed texts, all harms, and the very rule of
harming to restore a source text. This idea allows pretty flex-
ible algorithms of implementation as the process of harming
can be cyclic and the rule of harming can be modified. The
length of the final harmed text can be managed at every step
by changing the number of steps. This harming algorithm
destroys the sense of a source text and generates information
that allows restoring a source text and its sense.

A harmed text is always random as it is defined only by
random tuples of variable length. A harm describes only the
length of random substitutions during execution of Cm and
does not bear any semantics actually being a harmed text.

As a result we have two ciphertexts (a harm and a harmed
text), each of them having no sense neither in the alphabet of
a source text nor in the alphabet of a ciphertext. We actually
presented a ciphertext from a source text into two harmed
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ciphertexts that when taken separately cannot restore the
source text. Here we have realized a cryptographic idea of
division of secret splitting.

The distinctive feature of this process is that there is no
need to know intermediate harmed sequences to restore the
original sequence. Only the final harmed sequence (the final
harm after all rounds are over) and all the harms with the
rules of harming are required.

T h e o r e m 1.1 Let M be a sensible text of a length L0,
Ma be a text with the length La < L0, that was received from M
with the help of ”an ideal” archiver, YDT is a text derived from
a text M after executing m rounds of mechanism of harming
Cm and its length L(YDT) < La. Then YDT is a harmed text.

Proof. Let YDT be not a harmed text with the length
LDT < La. Then the transformation Cm(M) is an archiver
that generates a sensible text. This contradicts the theorem
hypothesis as the transformation of archiving cannot generate
a sensible text with the length L < La. Therefore, the text
YDT is a harmed text. �

Assume that an English source text has a length of L0

bites. With 8 bit symbols (letters) in accordance with the
ASCII table and all punctuation marks and numbers this text
contains BA = 3, 4 bits of redundant information per sym-
bol. Therefore an ideal archiver can shorten the length of the
source text to the value of

8 − 3, 4

8
L0 = 0, 575L0,

and retain the sence of the source text. Further shortening of
the length in a bit dimension will cause a distortion or loss of
sense. Let the above described text become η times smaller
after every round of a universal harming algorithm. Then the
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number of rounds m, to destroy the sense can be defined by
the following inequality:

L0

ηm
< 0, 575L0,

that results in:

m >
log 1, 739

log η
.

To ensure a high probability of distortion of sense in a
harmed text, the number m should be selected based on spe-
cific applications and a method of intervention of the harm-
ing algorithm into a computing environment. If, for example,
someone uses the universal algorithm as an encryption system
with observed harmed text and harm, then m should be no
less than 16.

It is possible to draw an analogy between ciphertexts and
harmed texts.

A ciphertext contains the entire sense of a source text
in the alphabet of a ciphertext and changes its appearance
without losing sense when a constant encryption algorithm
key changes.

All harmed texts and their harms contain the meaning of a
source text and change their appearance without losing sense
when a rule of harming changes. Here a ciphertext and a set
of harmed texts are equivalent to each other.

However, a single harmed text or incomplete set of harmed
texts do not contain the sense of a source text.

These statements are based on the definition of sense that
requires certain words from a thesaurus that are not available
in a harmed text any more because its length was reduced.
These statements assume that it is impossible to restore any
compressed text to the extent that is more than is allowed by
redundant information.



20 MV2 cryptographic algorithm

A quantitative measure of a harm effect is the degree
of sense distortion being the difference of the entropy in a
harmed text and that in a source text at various length seg-
ments of the harmed text. The quantity of such segments
equals

s =

[
L0 − LDT

LDT

]
,

where L0 and LDT are lengths of a source text and a harmed
text, respectively.

Therefore, the degree of sense distortion in a source text
can be found as

d = H(YDT) −
s∑

i=1

H(Mi)pi,
s∑

i=1

pi = 1,

where Mi is the part of a source text in the ith segment, pi

is probability of Mi, and the length of every Mi equals the
length of YDT.

If a text was generated by an ergodic source, then

d = H(YDT) − H(Mi).

A value d describes the degree of symbol disorder in a
harmed text as compared to a source text. With equiprobable
distribution of symbols in a harmed text (that represents the
maximum harm) the value d has the maximum value

dmax = log LDT −
s∑

i=1

H(Mi)pi;
s∑

i=1

pi = 1

or for an ergodic source of a source text:

dmax = log LDT − H(Mi).
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The process of generating a harmed text has the following
analytical interpretation:

Y
(i)
DT = D

(i)
1 (Y

(i−1)
DT , K

(i)
D )

Y
(i)
D = D

(i)
2 (Y

(i−1)
DT , K

(i)
D )

, i = 1, 2, ...m,

where Y
(i)
DT is a harmed text and Y

(i)
D is a harm caused in the

ith round, K
(i)
D is a harm key in the ith round, Y

(0)
DT = M is a

source text, m is the number of rounds.
The process of restoring a source text has the following

interpretation:

Y
(i−1)
DT = D−1

i (Y
(i)
DT, Y

(i)
D , K

(i)
D ), i = m, m − 1, . . . , 1.

Fig. 1.1 displays the general scheme of a universal harming
algorithm Cm. within one round. The input text Y

(i−1)
DT is

obtained in the previous round of the algorithm Cm. In the
first round it is the source text: Y

(0)
DT = M.

The scheme implies a special dividing tranformation of the
input text Y

(i−1)
DT with parameters (key) K

(i)
D ; resulting in two

output texts Y (i) and Y
(i)
D . In general, it is possible that the

text Y (i) being a result of the dividing tranformation may be
additionally encrypted using the key Ki, resulting at every
step in output text Y

(i)
DT.

Then the universal harming algorithm Cm is described as

YDT = E1(M, K)
YD = E2(M, K)
M = E−1

12 (YDT, YD, K)
, (1.2)

where
YDT = Y

(m)
DT

K = φ(K
(1)
D , . . . , K

(m)
D , K1, . . . , Km)

YDT = ψ(Y
(1)
D , . . . , Y

(m)
D )

(1.3)
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Figure 1.1: One round of the universal harming algorithm

and φ is appearance for keys K
(1)
D , . . . , K

(m)
D , K1, . . . , Km,

and ψ is some appearance for all harms Y
(1)
D , . . . , Y

(m)
D , that

depends on a specific application.

The described harming algorithm affects all symbols in a
text; in our example it affects all bytes. In general, as each
symbol of any alphabet is represented by a block of bits, all
symbols of the original sequence, and, therefore, the words,
will be changed due to symbol deformation beyond their ir-
redundancy and not the procedure of standard substitutions
with a fixed length. Thus, the sense of the original sequence
that defines these words is destroyed. A harmed sequence be-
comes shorter not because of compression but of deformation,
shortening of a symbol bit length beyond irredundancy which
results in losing sense. Evidently, such process can be carried
out many times over generated harmed sequences obtaining
new harmed sequences and associated harms of the second,
third and more levels.

Thus, we come to the idea of multichannel cryptography
on the basis of division of a ciphertext into harmed texts.
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Such division enables for a cryptanalyst to get the original ci-
phertext to estimate the unicity distance and to get a sensible
text by manipulating the keys when a harmed text or at least
one of harms is missing.

D e f i n i t i o n 1.4 A multicannel cryptographic trans-
formation shall be a transformation of source texts resulting in
two or more harmed texts that have a cryptographic property
of dividing the secret:

– any incomplete set of harmed texts does not allow (pos-
sibly, except for entire enumeration of missing harmed
texts) decryption of the received message;

– any complete set of harmed texts transforms the task
of decryption into a classical task of a system breaking
when a ciphertext is known and with possible greater key
space using that of the harming algorithm.

Destruction of the sense of a source text or a ciphertext
in an alphabet of a ciphertext causes additional key oppor-
tunities of the encryption process and increase of Shannon’s
unicity distance. Actually, the very use of this approach re-
sults in several ciphertexts, each of them having no sense in an
alphabet of a ciphertext, and, respectively, no sensible source
text from which it was generated. It is worthy to note the
duality of harm text analysis. If a cryptanalyst uses only ob-
served harms without the hypothesis of concealed ciphertexts,
then he deals with an ideal encryption system. If he analyses
based on concealed ciphertext models, then he deals with an
encryption system with a very large unicity distance defined
by uncertainty of a harmed text concealed. The need to have
all ciphertexts for decryption poses a very difficult problem
in front of a cryptanalyst. It is problem of interception while
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using various data channels and cryptanalysis in the field of
harmed cipher texts.

Various methods of harming allow synthesizing crypto-
graphic system models for different applications with different
characteristics and properties.



Chapter 2

Usage schemes and
modes of multichannel
ciphers

2.1 Application

of mechanism of harming

A universal mechanism of harming allows creating new
applications due to manipulating input and output data.

Let’s enumerate variants of data transmission possible at
using a two-channel mechanism (1.2).

1. The key K is transmitted via a secure channel, and out-
puts YDT, YD are transmitted via an open channel.

This item corresponds to a classical symmetric system.

2. The key K and the output YDT are transmitted via a
secure channel, and the output YD is transmitted via an
open channel.

25



26 MV2 cryptographic algorithm

3. The output YDT is transmitted via a secure channel,
and the key K and the output YD are transmitted via
an open channel.

4. The key K and the output YD are transmitted via a
secure channel, and the output YDT is transmitted via
an open channel.

5. The output YD is transmitted via a secure channel, and
the key K and the output YDT are transmitted via an
open channel.

Moreover, the mechanism of harming can be used for mes-
sage authentication and in this case the following variants can
be considered:

6. The key K and the plaintext M are transmitted via a
secure channel, and the outputs YDT, YD are transmitted
via an open channel.

7. The key K and the output YDT are transmitted via a
secure channel, and the output YD and the plaintext M
are transmitted via an open channel.

8. The output YDT and the plaintext M are transmitted
via a secure channel, and the key K and the output YD

are transmitted via an open channel.

9. The key K and the output YD are transmitted via a
secure channel, and the output YDT and the plaintext
M are transmitted via an open channel.

10. The output YD and the plaintext M are transmitted via
a secure channel, and the key K and the output YDT are
transmitted via an open channel.



Chapter 2. Schemes and modes of multichannel ciphers 27

2.2 Tasks

of a two-channel cipher attacker

Let’s consider tasks of an adversary cryptanalyst, that
arise at using the universal mechanism of harming (1.2).
Assume that an attacker knows the type of the mappings
E1, E2, E

−1
12 . Then, depending on the schemes used for ma-

nipulating channels, the following tasks can be considered:

1. An attacker knows the entire ciphertext (YDT, YD), he
needs to recover:

a) the corresponding plaintext M ;

b) the key K;

c) the corresponding plaintext M and the key K.

These tasks are classical at researching symmetric ciphers.
The following tasks arise due to peculiarities of two-

channel system use, when an attacker can only observe one of
the outputs.

2. An attacker knows the output YDT, he needs to recover:

a) the plaintext M ;

b) the key K;

c) the output YD;

d) the plaintext M and the key K;

e) the plaintext M and the output YD;

f) the key K and the output YD;

g) the plaintext M , and the key K and the output
YD.
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3. An attacker knows the output YDT and the key K, he
needs to recover:

a) the plaintext M ;

b) the output YD;

c) the plaintext M and the output YD;

4. An attacker knows the output YDT and the correspond-
ing plaintext M , he needs to recover:

a) the key K;

b) the output YD;

c) the key K and the output YD;

5. An attacker knows the output YDT the key K and the
plaintext M he needs to recover the output YD.

6. An attacker knows the output YD, he needs to recover:

a) the plaintext M ;

b) the key K;

c) the output YDT;

d) the plaintext M and the key K;

e) the plaintext M and the output YDT;

f) the key K and the output YDT;

g) the plaintext M , the key K and the output YDT.

7. An attacker knows the output YD and the key K, he
needs to recover:

a) the plaintext M ;

b) the output YDT;
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c) the plaintext M and the output YDT;

8. An attacker observed the output YD and knows the cor-
responding plaintext M , he needs to recover:

a) the key K;

b) the output YDT;

c) the key K and the output YDT;

9. An attacker knows the key K, a plaintext M and the
output YD, he needs to recover the output YDT.

Security of the corresponding schemes of two-channel sys-
tem application depends on difficulty of solution of the enu-
merated tasks.



Chapter 3

MV2-transformation

3.1 Substitution transformation

for obtaining harmed texts

3.1.1 Mappings

with variable length of an image

The substitution stage of block ciphers is composed of dif-
ferent non-linear transformations mapping n-bit values to m-
bit ones which are usually called S-boxes. An n-bit to m-bit
S-box defines simply a substitution, i.e. to each n-bit input is
mapped a corresponding m-bit output value (which has not
necessarily the same length than the input). An S-box can be
described by a lookup table of 2n elements of m bits.

Such transformations are called mappings with image
strings of a fixed length, or mappings with fixed length out-
puts.

To build harming transformations, we shall consider map-
pings of the following kind:

f : {0, 1}n →
m⋃

i=r

{0, 1}i.

30
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We shall call such mappings as mappings with image
strings of a variable length, or mappings with a variable length
outputs. To make it simple, we shall introduce symbols:

Urm =

m⋃
i=r

{0, 1}i. (3.1)

Thus, the set {0, 1}i contains 2i elements, and the set Urm

contains

#Urm =

m∑
i=r

2i = 2m+1 − 2r

various binary strings. Note that if m < n, then mappings
with variable length outputs can not be injective, because
a set of inputs contains 2n different elements, and a set of
outputs contains 2m+1 − 2r < 2n.

Mappings with variable length outputs are used in some
archivers, for instance. A Huffman code can be an example
of such a mapping. [22].

The number of bits in the element x ∈ Urm will be denoted
by |x|. We shall also call the value |x| as the length of the
element x ∈ Urm.

We shall call two binary strings from the set Urm equal if
their lengths and corresponding bits are equal.

3.1.2 Definition of the MV2-transformation

To build harming transformations we shall consider substi-
tution transformations that map binary strings of the length
n bits into variable length strings, such that the maximum
length is smaller, than n. As the number of elements in the
domain of such a transformation is more than that in the
range, then such transformations are not injective mappings.
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But, to restore a plaintext from a ciphertext the transforma-
tion of a plaintext needs to be an invertible mapping.

Let r and n be integers such that 0 < r < n. Consider the
mappings

c : {0, 1}n → Ur n−1,

having the following properties:

1) c is surjective: for each element y ∈ Ur n−1 there is at
least one element x ∈ {0, 1}n, such that c(x) = y;

2) the restriction of c to Ur+1 n−1 is bijection;

3) for each element y ∈ {0, 1}r has only two preimages.

For every mapping c we shall define an integer function

f : {0, 1}n → {1, . . . , n − r + 1}

connected with it in the following way:

1) f(x) = n − |c(x)|, if |c(x)| > r;

2) if x1, x2 ∈ {0, 1}n, x1 �= x2 and c(x1) = c(x2) ∈ {0, 1}r,
then f(x1) �= f(x2) and f(x1), f(x2) ∈ {n−r, n−r+1}.

It is clear, that for a fixed mapping c there are 22r
various

functions f. Every pair (c, f) induce an injective mapping of
the kind:

T : {0, 1}n →
n−r−1⋃

i=1

{
{0, 1}n−i × {i}

}⋃
⋃{

{0, 1}r × {n − r, n − r + 1}
}
,

(3.2)

which transforms a binary string of a fixed length into the
pair: (a binary string of a variable length, a number). We
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shall denote a set of such mappings as Fr
n. We shall further call

these mappings as MV2-mappings (MV2-transformations).
Output values f(x) of a transformation T = (c, f) can be

encoded by a binary code (BC) as shown in the table 3.1. In
this table 0i indicates a bit string of i zeros.

Table 3.1: Value encoding f

f(x) 1 2 3 . . . n − r n − r + 1
BC 1 01 021 . . . 0n−r−11 0n−r

This cod coincides with the Huffman code of the alphabet
{1, . . . , n − r + 1} with distribution P, such that P (Y = i) =
2−i for 1 ≤ i ≤ n − r and P (Y = n − r + 1) = 2−r.

Let x ∈ {0, 1}n. We shall call the image c(x) ∈ Ur n−1 as
a remainder, and the cod of f(x) as a flag.

It’s obvious that any mapping from Fr
n can be set with

the help of the table, in the first column of which there is a
permutation (s1, . . . , s2n) of n-bit binary strings, and in the
right part there are images consisting of ”remainer” and ”flag”
parts, as it is shown in the table 3.2. In this table 0i and 1i

denote binary strings of i zeros and ones correspondingly.
If in the table 3.2 we fix the right columns, then different

permutations in first column will correspond to different MV2-
transformations. Thus, there is a bijection between the set of
permutations

{
(s1, . . . , s2n)

}
and the set Fr

n. Therefore:

#Fr
n = #

{
( c, f )

}
= 2n!.

In the table 3.3 there is an example of MV2-transformation
with parameters n = 4 and r = 2.

Note, that any flag mapping f splits the set {0, 1}n into
n− r +1 noncrossing subsets Xi such that ∀x ∈ Xi : f(x) = i
and in every set Xi, for n−r ≤ i ≤ n−1 exactly 2n−i elements
are contained and the set Xn−r+1 contains 2r elements.
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Table 3.2: Presentation of a substituation transformation

a symbol a remainder length a remainder a flag
s1 r 0r 0n−r−11
s2 r 0r−11 0n−r−11
. . . . . . . . . . . .

s2r+1 r + 1 0r+1 0n−r−21
. . . . . . . . . . . .

s2n−1−2r n − 2 1n−2 01
s2n−1−2r+1 n − 1 0n−1 1

. . . . . . . . . . . .
s2n−2r n − 1 1n−1 1

s2n−2r+1 r 0r 0n−r

. . . . . . . . . . . .
s2n r 1r 0n−r

Thus, there are as many various flag mappings as methods
of the set splitting {0, 1}n into n − r + 1 noncrossing subsets
Xi.

The number of ways to pick elements for X1 is equal to(
2n

2n−1

)
, then the number of ways to pick elements for X2 is

equal to

(
2n−1

2n−2

)
and so on.

Let F denote the set of all flag mappings f.

The set F contains

#F =

n−1∏
i=r

(
2i+1

2i

)
=

2n!
n−1∏
i=r

2i!

(3.3)

different mappings f.
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Table 3.3: Example of an MV2-transformation for n = 4 and r = 2

x 0000 0001 0010 0011
c(x) 111 110 10 01
f(x) (BC) 1(1) 1(1) 2(01) 3(00)

x 0100 0101 0110 0111
c(x) 10 11 010 11
f(x) (BC) 3(00) 2(01) 1(1) 3(00)

x 1000 1001 1010 1011
c(x) 00 001 100 00
f(x) (BC) 2(01) 1(1) 1(1) 3(00)

x 1100 1101 1110 1111
c(x) 101 000 011 01
f(x) (BC) 1(1) 1(1) 1(1) 2(01)

Similarly, the number of different remainder mappings is

2n!

2n−1!
· 2n−1!

2n−2!
· . . . · 2r+1!

2r!
· 2r! = 2n!

i.e. it is equal to the number of different MV2-mappings.

Let y ∈ Ur n−1 be a binary string, and i ∈ {1, 2, . . . , |y|.
We shall denote by y(i) a binary string, which is obtained from
the string y by the inversion of the i-th bit (For instance,
y = 01001010, then y(3) = 01101010).

L e m m a 3.1 Let T = (c, f) ∈ Fr
n be an MV2-trans-

formation. Then for any y ∈ Ur n−1 and for any 1 ≤ i ≤ |y|
the following is carried out

#
{

x ∈ {0, 1}n : c(x) = y
}

= #
{
x ∈ {0, 1}n : c(x) = y(i)

}
.
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3.1.3 Information estimations

for an MV2-transformation

During harming text symbols are replaced by binary
strings of various length. In the previous paragraph we de-
fined a family of transformations, which can be used to harm
arbitrary texts. The domain of an MV2-transformation is a
set {0, 1}n, it can be considered as an alphabet of plaintexts.
Let a probability distribution for the letters in the alphabet is
given. Then the input of the MV2-transformation is a random
vector and the outputs are random strings. Besides, as out-
puts of the MV2-transformation are binary strings of variable
length, the output lengths can also be considered as random
variables.

Let X be a discrete random variable with possible values
xi ∈ {0, 1}n which have probabilities pi, i = 1, 2, . . . 2n, and
let T = (c, f) be an MV2-transformation, where c : {0, 1}n →
Ur n−1 is a remainder mapping with images of variable length,
and f : {0, 1}n → {1, 2, . . . , n− r + 1} is a flag mapping. The
random pair YDT, YD, where YDT = c(X) and YD = f(X) is an
image of the random element X. The random variables YDT

and YD are random strings, and their lengths |YDT| and |YD|
are random values.

For the joint entropy of random elements X, YDT and YD

the following identities are satisfied [17]:

H(XYDTYD) = H(X) + H(YDTYD|X),
H(XYDTYD) = H(YDTYD) + H(X|YDTYD).

For a fixed transformation T ∈ Fr
n the pair (YDT, YD) =

T (X) is calculated X, therefore

H(YDTYD|X) = H(X|YDTYD) = 0.



Chapter 3. MV2-transformation 37

Consequently, for the joint entropy YDT and YD the fol-
lowing is satisfied:

H(YDTYD) = H(X). (3.4)

On the other hand

H(YDTYD) = H(YDT) + H(YD|YDT) = H(YD) + H(YDT|YD).

From that we have the following, using (3.4):

H(YDT|YD) = H(X) − H(YD), (3.5)

H(YD|YDT) = H(X) − H(YDT). (3.6)

By definition and (3.5) the mutual information between
YDT and YD is

I(YDT, YD) = H(YDT) + H(YD) − H(X). (3.7)

We shall consider informational dependencies between the
input and outputs.

If T is fixed, the output YDT is completely determine by
the input X, therefore H(YDT|X) = 0.

Then the mutual information between X and YDT equals

I(X, YDT) = H(YDT). (3.8)

For the joint entropy of X and YDT the following is carried
out:

H(XYDT) = H(X) + H(YDT|X) = H(YDT) + H(X|YDT).

From which we have

H(X) = H(YDT) + H(X|YDT). (3.9)
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Similarly, as YD is the part of the image X and the trans-
formation T is fixed, then H(YD|X) = 0, therefore, for the
joint entropy and the mutual information between the ran-
dom variables X and YD the following is carried out:

H(X) = H(YD) + H(X|YD), (3.10)

I(X, YD) = H(YD). (3.11)

If T = (c, f) is an MV2-transformation with the parame-
ters r and n, then the flag mappings f split the domain into
noncrossing subsets X1, . . .Xn−r+1 ⊂ {0, 1}n, such, that for all
x ∈ Xi the following is carried out: f(x) = i.

Let the inputs xi is numbered such that for i = 1, . . . , 2n−1

the images c(xi) ∈ {0, 1}n−1 and f(xi) = 1; for i = 2n−1 +
1, . . . , 2n−1+2n−2 the images c(xi) ∈ {0, 1}n−2, and f(xi) = 2;
. . . , for i = 2n−2r+2+1, . . . , 2n−2r+1 images c(xi) ∈ {0, 1}r+1

and f(xi) = n − r − 1; for i = 2n − 2r+1 + 1, . . . , 2n − 2r

images c(xi) ∈ {0, 1}r and f(xi) = n − r; and, finally, for i =
2n−2r +1, . . . , 2n images c(xi) ∈ {0, 1}r and f(xi) = n−r+1.

Then for the remainder entropy H(YDT) we have

H(YDT) = −
2n−2r+1∑

i=1

pi log pi −
2n−2r∑

i=2n−2r+1+1

(pi + p′i) log(pi + p′i),

where p′i = pi+2r for i = 2n − 2r+1 + 1, . . . , 2n − 2r.
Therefore the random elements X and YDT have different

distributions in the general case.
Difference of input and output entropies is

H(X)−H(YDT) =
2n−2r∑

i=2n−2r+1+1

(
pi log(1 +

p′i
pi

)+ p′i log(1 +
pi

p′i
)
)
,

and can be estimated as

0 ≤ H(X) − H(YDT) ≤
2n∑

i=2n−2r+1+1

pi log(1 +
1

pi
).
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Denote by Pr the probability event f(X) = r, then

Pr = P (c(X) ∈ {0, 1}r) =

2n∑
i=2n−2r+1+1

pi

and

2n∑
i=2n−2r+1+1

pi log(1 +
1

pi
) = Pr

2n∑
i=2n−2r+1+1

pi

Pr
log(1 +

1

pi
).

As the function x log(1 +
1

x
) is convex, then, due to the

Jensen inequality we have

2n∑
i=2n−2r+1+1

pi log(1 +
1

pi

) ≤ ( 2n∑
i=2n−2r+1+1

pi

)
log(1 +

Pr∑
pi

).

Thus, the following estimation is true:

0 ≤ H(X) − H(YDT) ≤ Pr. (3.12)

At that, the equality can be reached only if all inputs xi

with r-bit images have the same probability p = pi.

For equiprobable inputs all probabilities pi = 1/2n, i =
1, . . . , 2n, therefore, we have the following from (3.12):

H(X) − H(YDT) = n − H(YDT) = 2r+1−n. (3.13)
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Similarly, for flag entropy H(YD) we have:

H(YD) =
(2n−1∑

i=1

pi

)
log

1
2n−1∑
i=1

pi

+ . . . +

+
( 2n−2r∑

i=2n−2r+1+1

pi

)
log

1
2n−2r∑

i=2n−2r+1+1

pi

+

+
( 2n∑

i=2n−2r+1

pi

)
log

1
2n∑

i=2n−2r+1

pi

.

Let
Pk =

∑
{x:f(x)=k}

P (X = x) (3.14)

be the probability that a flag image will possess the value
k = 1, . . . , n − r + 1. Then

H(X) − H(YD) =
2n−1∑
i=1

pi log P1

pi
+ . . . +

+
2n−2r∑

i=2n−2r+1+1

pi log Pn−r

pi
+

+
2n∑

i=2n−2r+1

pi log Pn−r+1

pi
.

From here, using again Jensen inequality we get:

H(X) − H(YD) ≤
n−r∑
k=1

(n − k) · Pk + r · Pn−r+1.

taking into account that
n−r+1∑

k=1

Pk = 1, we have:

H(X) − H(YD) ≤ n + Pn−r+k −
n−r+1∑

k=1

k · Pk, (3.15)
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In the inequality (3.15) equality is reached only if for every
k = 1, . . . , n − r + 1 probabilities of all the preimages x ∈ Xk

are equal to P (X = x : f(x) = k) = Pk

2|f(x)| for all x ∈ Xk,
where |f(x)| is a number of bits in the representation of the
value f(x) in form of a bit string (see table 3.1).

Whatever probability distribution of the random element
X, is, for the entropy of the random elements YDT and YD the
following inequalities are true:

H(YDT) ≤ log(2n − 2r) (3.16)

H(YD) ≤ log(n − r + 1) (3.17)

3.1.4 Information estimations for outputs
at uniform input distribution

In this section we consider an important special case when
the inputs x for an MV2-transformation T = (c, f), are uni-
formly distributed, i.e. probabilities of any symbol x ∈ {0, 1}n

coincide and equal
1

2n
.

In this case the remainder probability P (YDT = y) and the
flag probability P (YD = k) are equal:

P (YDT = y) =

⎧⎨⎩ 2−n, if y ∈
n−1⋃

i=r+1

{0, 1}i

21−n, if y ∈ {0, 1}r

; (3.18)

P (YD = k) =

{
2−k, if 1 ≤ k ≤ n − r
2r−n, if k = n − r + 1

. (3.19)

If T = (c, f) is a fixed MV2-transformation and the ran-
dom element X ∈ {0, 1}n has a uniform distribution, then the
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entropy H(X) = n. Therefore the following eqality follows the
form(3.8), (3.12), (3.18)

I(X; YDT) = H(YDT) = n − 2r+1−n. (3.20)

Similarly, from expressions (3.11), (3.15), (3.19) and iden-
tity

m∑
k=1

k · 2k = (m − 1)2m+1 + 2

we have
I(X; YD) = H(YD) = 2 − 2r+1−n. (3.21)

From (3.5), (3.10) and (3.21) we have:

H(X|YD) = H(YDT|YD) = n − 2 + 2r+1−n. (3.22)

And from (3.9) and (3.20) we shall get:

H(X|YDT) = 2r+1−n, (3.23)

Accordingly, it follows from (3.7), (3.20) and (3.21), that:

I(YDT; YD) = 2 − 2r+2−n. (3.24)

3.1.5 Estimations of output lengths
for an MV2-transformation

Let T = (c, f) be an MV2-transformation. If we con-
sider an input as a random element X ∈ {0, 1}n, then the
remainder output YDT = c(X) is a random element which
possesses values from a set of variable length binary strings.
Correspondingly, the output length of the remainder |YDT| is
a numeric random value. As it was mentioned above, the flag
output can be encoded by a binary code (see table 3.1), in this
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case the output YD = f(X) is a random element possessing
values from a set of variable length strings, and the output
length of the flags |YD| is also a numeric random value.

Using the designation (3.14), in the general case mathe-
matical expectations of output lengths of the remainder and
flags can be represented by the expression:

E(|YDT|) = r · Pn−r+1 +
n−r∑
k=1

(n − k) · Pk; (3.25)

E(|YD|) = (n − r) · Pn−r+1 +
n−r∑
k=1

k · Pk. (3.26)

In case of uniform distribution of inputs for mathematical
expectations and random value dispersions |YDT| and |YD| the
following is true:

Claim 3.1 If T = (c, f) ∈ Fr
n, is fixed and inputs have

uniform distribution then for the mathematical expectations
E(|YDT|), E(|YD|) and dispersions D(|YDT|), D(|YD|) of output
lengths the following equalities are true:

E(|YDT|) = n − 2 + 2r+1−n, (3.27)

E(|YD|) = 2 − 2r+1−n, (3.28)

D(|YDT|) = 2 − 2n − 2r − 1

2n−r−1
− 1

4n−r−1
, (3.29)

D(|YD|) = 2 +
(n − r)2 + 2(n − r) − 1

2n−r−1
− 1

4n−r−1
. (3.30)

Proof. The proof of the statement 3.1 is obtained with
the help of a direct computation.

In fact, the probability P (YDT ∈ {0, 1}k) is determined
from (3.18), and P (YD = k) from (3.19). To prove the equality
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(3.27) and (3.28), it’s enough to substitute the corresponding
probability values.

To prove the equality (3.29) and (3.30), it’s enough to
substitute the corresponding probability values for dispersion
definition and use the equality

m∑
k=1

k2 · 2−k = 6 − (m2 + 4m + 6) · 2−m.

�.

3.2 Using MV2-transformations

for coding texts

Modern computer systems operate with machine words
which are binary strings of a fixed length, that is 8, 16, 32
and so on bits, as a rule. The minimal discrete is a bit, that
is a bit possessing the value 0 or 1. The minimal addressable
discrete is usually a byte that consist of eight bits. Assume
that a plaintext consists of sequential symbols, each of them
is being chosen from a finite alphabet. In computer systems
any text can be considered as a concatenation of bytes. The
MV2-transformations that are defined on a binary string set
of a fixed length n allow extending the domain for a set binary
strings having lengths divisible by n.

Let a plaintext alphabet contain 2n letters and symbols
coding binary strings {0, 1}n. Then (the cod of) a plaintext
M is a concatenation of elements from xi ∈ {0, 1}n :

M = x1‖x2‖ . . .‖xL,

where L denotes the number of symbols in the text.
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D e f i n i t i o n 3.1 Let T = (c, f) ∈ Fr
n be an MV2-

transformation and M = x1‖x2‖ . . . ‖xL be a text representing
a concatenation of L symbols xi ∈ {0, 1}n. We shall call the
result of using the transformation T to the text M the pair(
c(M), f(M)

)
of binary strings, where:

c(M) = c(x1)‖c(x2)‖ . . .‖c(xL),
f(M) = f(x1)‖f(x2)‖ . . . ‖f(xL).

(3.31)

As before, the image c(M) of the text M is called a re-
mainder, and f(M) is called flags. Thus, the remainder of the
texts M is a concatenation of image remainders c(xi), and the
flags of the text M is a concatenation of image flags f(xi) (see
(3.31)).

Example 3.1 Let an MV2-transformation (c, f) is defined
by the table 3.3.

Let the plaintext

M = 0010‖0100‖0010‖1001‖0110‖0110‖0110‖1000

is given as the input. The result of the transformation is presented
in the table:

M 0010 0100 0010 1001 0110 0110 0110 1000
c(M) 10 10 10 001 010 010 010 00
f(M) 01 00 01 1 1 1 1 01

We get the remainder:

c(M) = 1010‖1000‖1010‖0100‖1000
and the flags:

f(M) = 0100‖0111‖1101.
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3.2.1 The number

of remainder and flags preimages

Let T = (c, f) be an MV2-transformation. Let the set
{M}, contains all texts consisting of L symbols. The length
of c(M) is no more than the length of M. In the general case
there are several preimages of c(M).

Let YDT = c(M) be the remainder of the text M, and
YD = f(M) be the flags of the text M. We shall further call
the plaintext M as an input of the MV2-transformation, and
an obtained remainder and flags of the text M – as outputs.

Let L = |M | and l = |YDT| then

L · r ≤ l ≤ L · (n − 1)

and the number of preimages of the remainder YDT depends
on its length. In this section we shall find this dependence.

Let K̃l s(r, n) denote the number of various integer solu-
tions of equation:

z1 + . . . + zs = l, r ≤ zi < n, i = 1, . . . , s. (3.32)

The number of solutions of the equation (3.32) equals:

K̃l s(r, n) =

m∑
k=0

(−1)k

(
s

k

)(
l − rs − (n − r)k + s − 1

s − 1

)
,

where the limit superior m = min

{
s,

l − sr

n − r

}
.

Let N
(c)
l be the number of various preimages for an image

of the length l. Then

N
(c)
l = 2L · δ(l − rL) +

L−1∑
i=0

2i

(
L

i

)
K̃l−r·i L−i(r + 1, n), (3.33)
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where δ(x) =

{
0, if x �= 0
1, if x = 0

Note, that for N
(c)
l the following estimation is true:

N
(c)
l ≤ 2nL−l, rL ≤ l ≤ (n − 1)L. (3.34)

As the possible number of texts, consisting of the concate-
nation of L n-bits strings, equals 2nL, the following equality
is satisfied:

(n−1)L∑
l=rL

2l · N (c)
l = 2nL. (3.35)

In Fig. 3.1 there is a chart of the dependence of the number
of preimages on an image length for 7-byte inputs and the
MV2-transformation with the parameters r = 3 and n = 8.
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Figure 3.1: The number of preimages for reminder outputs of different
length when L = 7, n = 8, r = 3
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We shall estimate the number of possible preimages for
flag outputs. The flag output

YD = f(M) = f(x1)‖ . . . ‖f(xL)

can possess (n − r + 1)L various values. Let kj letters xi of
M have the flag output f(xi) = j, where j = 1, . . . , n− r + 1.
Then

n−r+1∑
j=1

kj = L, 0 ≤ kj ≤ L (3.36)

and the number of flag preimages N (f) equal

N (f) = 2kn−r+1 ·
n−r+1∏

j=1

2(n−j)·kj . (3.37)

Due to (3.3) there are

n−1∏
i=1

2i! mappings T = (c, f) ∈ Fr
n,

giving the same flag images in all texts.

3.2.2 Evaluations of output lengths
of the remainder and the flags
of an MV2-transformation

Output lengths are of great importance for analysis of
MV2-transformations. It’s impossible to evaluate estimated
values of output lengths in the general case. Therefore, we
won’t go beyond a special case when an input text M is ran-
dom and uniformly chosen from the set {0, 1}nL. There is an
example of the probability distribution of remainder lengths
for 7-byte equiprobable inputs in case of an arbitrary MV2-
transformation with the parameters r = 3 and n = 8 in Fig.
3.2.
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Figure 3.2: A chart of probability distribution of remainder output
lengths at a uniform distribution of 7-byte inputs for an arbitrary fixed
MV2-transformation with the parameters n = 8, r = 3.

Let T = (c, f) be an MV2-transformation. Let M =
x1‖ . . .‖xL be a plaintext consisting of L n-bit strings xi ∈
{0, 1}n, and let YDT = c(M), YD = f(M) be images of the
text M at the transformation T.

Then mathematical expectation of the remainder output
length is:

E(|YDT|) = 2−n·L
(n−1)·L∑
i=r·L

i · N (c)
i · 2i,

where N
(c)
i is the number of various preimages for the remain-

der output length i.
On the other hand, as the text M is being randomly and

uniformly chosen from the set {0, 1}nL, the remainder output
length can be considered as the sum of integer independent
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random values |c(Xi)|, Xi ∈ {0, 1}n. Due to (3.27) for math-
ematical expectation of the remainder length at uniformly
distributed inputs we have

E(|YDT|) =
(
n − 2 + 2r+1−n

) · L.

Thus the following equality is satisfied:

2−n·L
(n−1)·L∑
i=r·L

i · N (c)
i · 2i =

(
n − 2 + 2r+1−n

) · L. (3.38)

Similarly, the output length of the flags |YD| can be consid-
ered as the sum of independent integer random values |f(Xi)|,
Xi ∈ {0, 1}n. Then, due to (3.28) for mathematical expecta-
tion of flags output length we have

E(|YD|) =
(
2 − 2r+1−n

) · L.

Thus, the following statement is true

Claim 3.2 Let a text M = x1‖ . . .‖xL, consist of L sym-
bols xi, being independently of one another, randomly and uni-

formly chosen from {0, 1}n, and let some T =
(
c, f
)
∈ Fr

n be

fixed. Let YDT = c(M) be the remainder and YD = f(M)
be the flags obtained in the result of using the transforma-
tion T for the text M, and let |YDT|, |YD| be their lengths.
Then for the mathematical expectation of the remainder length

E
(
|YDT|

)
and the mathematical expectation of the flag length

E
(
|YD|

)
the following is satisfied

E(
(
|YDT|

)
=
(
n − 2 + 2r−n+1

)
· L; (3.39)

E(
(
|YD|
)

=
(
2 − 2r−n+1

)
· L; (3.40)
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The statement 3.2 allows finding coefficients that show
estimated decrease of the output length of the MV2-trans-
formation relative to the length of a plaintext.

D e f i n i t i o n 3.2 We shall call the number

Kc = 1 − 2 − 2r−n+1

n
. (3.41)

as the compression ratio of the remainder at the transforma-

tion T =
(
c, f
)
∈ Fr

n.

D e f i n i t i o n 3.3 We shall call the number

Kf =
2 − 2r−n+1

n
. (3.42)

as the compression ratio of flags at the transformation T =(
c, f
)
∈ Fr

n.

It’s evident, that

Kc = 1 − Kf . (3.43)

To evaluate probabilities of output lengths rejection from
the average value the following is satisfied

Claim 3.3 Let the text M = x1‖ . . .‖xL, consist of L
symbols xi, being independently of one another, random and

uniformly chosen from {0, 1}n and some T =
(
c, f
)
∈ Fr

n be

fixed. Then for probabilities of length rejection of the obtained
remainder |YDT| = |c(M)| from E(|YDT|) and the one of the
obtained flags |YD| = |f(M)| from E(|YD|) the following is
satisfied

P
(∣∣∣|YDT − E(|YDT|)

∣∣∣< σc · L
)

> 1 − 1

L2
, (3.44)
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P
(∣∣∣|YD| − E(|YD|)

∣∣∣< σf · L
)

> 1 − 1

L2
, (3.45)

where

σc =
√

2 − (2n − 2r − 1) · 2r−n+1 − 4r−n+1,

σf =
√

2 + ((n − r)2 + 2(n − r) − 1) · 2r−n+1 − 4r−n+1.

The proof of the statement 3.3 follows from the statements
3.1, 3.2 and from the Chebyshev ineqiality [16].

3.2.3 Information and statistical

estimations
for remainder and flags outputs

In the general case the distribution of probabilities of a
remainder and flags outputs essentially differs from the one
of probabilities of a plaintext. It’s obvious, for instance, that
at a uniform distribution of inputs probabilities of outputs
are not distributed uniformly. In Fig. 3.3 there is a chart of
the probability distribution of remainder lengths for uniformly
distributed 7-byte inputs.

As before, we shall assume, that M, YDT and YD are ran-
dom elements with the corresponding probability distribu-
tions. For these random elements the equalities (3.4) – (3.11)
are satisfied, if we set X = M.

As the number of elements in the remainder range is
2(n−1)L+1−2rL, then for the entropy of the remainder H(YDT)
the following inequality is true

H(YDT) ≤ log
(
2(n−1)·L+1 − 2r·L) . (3.46)
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Figure 3.3: A chart of the probability distribution of remainder lengths
for uniformly distributed 7-byte inputs of a fixed MV2-transformation
with the parameters n = 8, r = 3

Similarly, the number of elements in the flags range is
(n− r +1)L, therefore, for the entropy of the flags H(YD) the
following inequality is satisfied

H(YD) ≤ L · log(n − r + 1). (3.47)

Consider a case, when the text M is being at random and
uniformly chosen from the set {0, 1}nL.

Let us evaluate the entropy of the remainder output in
this case.

From (3.33) we have

H(YDT) =

(n−1)L∑
i=rL

2i−nLN
(c)
i log

2nL

N
(c)
i

.
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Due to the inequality (3.34) we have

H(YDT) ≥ 2−nL

(n−1)L∑
i=rL

i · 2iN
(c)
i ≥ (n − 2 + 2r+1−n) · L.

Taking into account (3.46) we get the valuation:(
n − 2 + 2r−n+1

)
· L ≤ H(YDT) < (n − 1) · L + 1. (3.48)

For the conditional entropy H(M |YDT) the equality (3.9)
is true, from which we have: H(M |YDT) = H(M) − H(YDT).
Then, from (3.48) it follows that

L − 1 ≤ H(M |YDT) ≤ 2 − 2r+1−nL. (3.49)

Let’s evaluate the entropy of flags outputs in case, when
the text M is chosen at random and uniformly from the set
{0, 1}nL. In this case YD = f(M) = f(x1)‖ . . .‖f(xL) can
possess (n − r + 1)L different values: 1 ≤ f(xi) ≤ n − r + 1,
i = 1 . . . L.

Let kj letters xi of M have the flag output f(xi) = j, where
j = 1, . . . , n − r + 1. Then

∑
j = 1n−r+1kj = L and from

(3.37) it follows that probability of any image at a uniform
distribution of inputs will be

P = 2kn−r+1 ·
n−r+1∏

j=1

2−j·kj .

Therefore ( [16]), for the flag entropy we have:

H(YD) = L!
∑

n−r+1

j=1
kj=L

(
2kn−r+1

n−r+1∏
i=1

2−iki

ki!

)⎛⎝−kn−r+1 +
n−r+1∑

j=1

jkj

⎞⎠ ,

where ki ≥ 0, i = 1 . . . n − r + 1.
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The number of items in the sum
∑

k1+...+kn−r+1=L

is equal

to the number of different non-negative integer solutions of

the equation (3.36) and equals

(
n − r + L

n − r

)
=

(
n − r + L

L

)
(see, for example, [16, chapter II]), and the concave parenthe-
sis equals the output length. Therefore, the entropy of flags
output just coincides with the mathematical expectation of
the output length, and correspondingly from (3.40) it follows,
that

H(YD) = (2 − 2r+1−n) · L. (3.50)

Then, from (3.5) and (3.10), in case of uniform distribution
of inputs M it follows that

H(M |YD) = H(YDT|YD) = (n − 2 + 2r+1−n) · L. (3.51)

About distribution of bit remainder
Due to the lemma 3.1 for any remainder bit the MV2-

transformation, the number of elements in a set of preimages
for the value 0 is equal the one for the value 1. Therefore, the
following theorem is true.

T h e o r e m 3.1 Let T = (c, f) be an MV2-transforma-
tion, the random variable YDT ∈ Ur n−1 be the remainder out-
put, |YDT| be a length of the remainder output, and ck be the
k-th bit of the remainder output. Then, at a uniform distri-
bution of inputs the probability that the value of the k-th bit
is 0 is

P
(
ck = 0

∣∣∣ 0 ≤ k ≤ |YDT|
)

=
1

2
. (3.52)

According to the theorem 3.1 at the uniform input distri-
bution the reminder looks like a uniform text.
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3.2.4 Composition

of two MV2-transformations

Let T = (c, f) ∈ Fr
n be an MV2-transformation, and let

M =
L⋃

i=1

{0, 1}n·i be a set of binary strings, and let a string

M ∈ M. So strings from the set M have lengths divisible by
n. It’s evident, that the remainder output c(M) of the MV2-
transformation of the string M, in the general case, doesn’t
belong to the set M, because its length in the general case is
not divisible by n. On the other hand, the remainder c(M) can
always be augmented from the right by a bit string b(c, M) so,
that the concatenation c(M)‖b(c, M) would belong to the set
of strings M. To be certain we shall assume that b is either the
empty string or a binary string which contains from 1 to n−1
zeros. Similarly one can augment a flags output. Denote by
An the operation of augmentation from the right by zero bits
of an arbitrary binary string till its length is divisible by n. Let
two MV2-transformations: T1 = (c1, f1), T2 = (c2, f2) ∈ Fr

n.
be selected at random. Let c′i(M) = An ◦ci(M) = An(ci(M)),
be a transformation being a composition of the mapping ci

and the operation An, i = 1, 2. Then, we can define the com-
position of MV2-transformations in the following way:

T2 ◦ T1(M) =
(
c′2
(
c′1(M)

)
, f2

(
c′1(M)

)
‖f1(M)

)
. (3.53)

Example 3.2 Composition of two MV2-transformations.
The first transformation

x 0000 0001 0010 0011 0100 0101 0110 0111
c(x) 01 110 10 111 01 11 010 11
f(x) 00 1 01 1 01 00 1 01

x 1000 1001 1010 1011 1100 1101 1110 1111
c(x) 00 001 100 10 101 000 011 00
f(x) 01 1 1 00 1 1 1 00
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The second transformation

x 0000 0001 0010 0011 0100 0101 0110 0111
c(x) 100 001 101 00 011 10 110 010
f(x) 1 1 1 00 1 01 1 1

x 1000 1001 1010 1011 1100 1101 1110 1111
c(x) 11 01 00 10 01 11 111 000
f(x) 00 01 01 00 00 01 1 1

A plaintext
M = 0010‖0100‖1010‖1001‖0110‖1110‖0110‖1000‖

‖1010‖1000‖1100‖1011‖0100‖1110‖1100‖1001
After the first transformation we have a remainder C1 and

flags F1:
C1 = 10‖01‖100‖001‖010‖011‖010‖00‖100‖00‖101‖10‖01‖011‖101‖001
F1 = 01‖01‖1‖1‖1‖1‖1‖01‖1‖01‖1‖00‖01‖1‖1‖1.

We shall augment the remainder C1 by zeros from the right
and get the string (Text1), that is the input of the second trans-
formation.

Text1 = 1001‖1000‖0101‖0011‖0100‖0100‖0010‖1100‖1011‖1010‖0100.

We get a new remainder and flags:

C2 = 01 11 10 00 011 011 101 01 10 00 011,
F2 = 01 00 01 00 1 1 1 00 00 01 1.

Finally we have the reminder C and flags F = F2‖F1:
C = 0111 1000 0110 1110 1011 0000 1100.
F = 0100 0100 1110 0000 1100 0101 1111 1011 0110 0011 1100.

L e m m a 3.2 For any string C ∈
∞⋃
i=r

{0, 1}i·n and for any

transformation T = (c, f) ∈ Fr
n there exists such a text M ∈

∞⋃
i=r

{0, 1}i·n , that c(M) = C.

The proof of the lemma follows directly from the possi-
bility of presenting i · n in form of a sum of integer numbers
i · n =

∑
ki, where ki such that r ≤ ki ≤ n − 1.

Transformations T ∈ Fr
n don’t form a group, as the fol-

lowing is true
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Claim 3.4 For any three mutually different transforma-
tion

T1 = (c1, f1), T2 = (c2, f2), T3 = (c3, f3) ∈ Fr
n

there is such M ∈
∞⋃
i=r

{0, 1}i·n , that

c1

(
An(c2(M))

)
�= c3(M).

The proof of the statement 3.4 follows from the lemma 3.2,
as one can choose such a string M, consisting of n2 symbols,
that the length |c3(M)| = (n − 1)n. In this case the length∣∣∣c1

(
c2(M)

)∣∣∣ < (n − 1)n.

It follows from the statement 3.4 , that the composition of
MV2-transformations is not an MV2-transformation, there-
fore there won’t be such an MV2-transformation that would
let go back to a plaintext through one round from any core
obtained in the result of several transformation rounds.



Chapter 4

Main encryption scheme

4.1 A general scheme of harming

based on MV2-transformations

A system of harming can be considered as a chiphersys-
tem, a ciphertext of which consists of two or more interrelated
parts.

In [37] there is an encryption method with splitting in-
to two output channels and a device of its implementation
suggested. MV2-transformations described in part 3.1 can be
used as a transformer in such a device.

Each MV2-transformation T = (c, f) maps an n-bit binary
string x into a pair (c(x), f(x)), consisting of two variable
length strings. It can be set by the table, in the left part
of which there’s a permutation of values from 1 to 2n (see
3.1.2), and in the right part there are images consisting of
”remainder” and ”flag” parts.

Let us fix parameters r and n and chose an ordered set T1,
T2, . . . , Tk ∈ Fr

n of random MV2-transformations. Further
this set will be considered as a key.

The transformation process of an input string consist of
rounds. At each round a permutation transformation and an
MV2-transformation taken from the key will be performed

59
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over input data of the round. The output of an MV2-
transformation is the remainder and the flags. We shall send
an obtained remainder to the input of the following round,
and accumulate the flags. Note, that a binary string of arbi-
trary length goes to the round input, and on the output we
have two strings.

The number of rounds can be set directly or indirectly.
As it is seen from the properties of MV2-transformations, the
remainder has a length smaller than that of an input string.
Therefore the threshold length for the length of the last re-
mainder can be used as indicator stoping the transformation
process. In this case rounds will be repeated till the remainder
length smaller than the threshold appears.

We shall call the remainder of the last performed round as
a core.

Such a scheme reminds a substitution permutation net-
work (SPN) (see [15]). The architecture of SPN is a funda-
mental architecture of block ciphers. It is based on principles
of ”confusion” and ”diffusion”, suggested by C. Shannon [52].
These principles are implemented with the help of substitution
and permutation transformations. Permutation considerably
complicates interrelations between statistical and analytical
characteristics of an open and an encrypted texts. Dispersion
spreads influence of particular bits of an open text on as much
as possible number of a ciphertext bits. It also masks statis-
tical interrelations and complicates cryptanalysis. One of the
main methods is to interleave periodically diffusion (with con-
siderably smaller tables) and permutation in the same cipher
in various combinations. Cryptographic functions are imple-
mented by means of combinations of substitution and permu-
tation transformation. Permutation transformations are lin-
ear, and substitution ones are the main source of non-linearity
in the cipher .
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A suggested method of harming can be represented in form
of a global structure, represented in Fig. 4.1. The encryption
process, performed according to this method, is divided into
rounds. Linear and non-linear transformation alternate. Each
round consists of a linear layer and a none-linear layer.

Using a round procedure Raund(M), can be probabilistic
and be performed according to the scheme

Raund(M) =
(
R||C(K, R, M) , F (K, R, M)

)
,

where R is a randomly generated bit block, C(K, R, M) and
F (K, R, M) are the first and the second output components
of the substitution transformation, M is a round input and
K is a key.

The remainder output of a round is R||C(K, R, M).
During decryption a deterministic procedure Raund−1

works according to the following recurrent scheme:

(Ri‖Ci, Fi) = Raund−1
(
Ri+1||Ci+1 , Fi+1

)
for 0 < i < P

and (M, Λ) = Raund−1
(
R1||C1 , F1

)
,

where Λ – is the empty string.

In the architecture of the offered scheme there’s a signifi-
cant difference from the architecture of SPN of block ciphers.
At performing each round the whole text, rather than one
block, is processed.



62 MV2 cryptographic algorithm

r

Plain text

Permutation

Sr(q)

||

||

Sr(q)

||

||

Sr(q)

||

||

core flags

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

GPS

r

Permutation

Sr(q)

||

||

Sr(q)

||

||

Sr(q)

||

GPS

r

||

||

GPS

Figure 4.1: Presentation of the global structure as SPN. Here GPS
— Random number generator, Permutation – a linear transformation,
Sr(q) – a substitution transformation.
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4.2 Preliminary analysis

of the general scheme

which uses

MV2-transformations

It is accepted that evaluation of cipher security is executed
by building attacks or by indirect features. At that in tradi-
tional ciphers at least a ciphertext is considered to be known,
and the task of a cryptanalyst is to recover the key or the
plaintext.

For schemes of harming, similar to those considered above,
a ciphertext consists of two parts – a core and flags. There-
fore, to use such schemes it’s necessary to consider additional
variants when only a core or a core and keys are known, or
only flags or flags and keys are known.

4.2.1 Round
of the general scheme of harming

As we have already mentioned, the whole process of harm-
ing in the suggested scheme is divided into rounds. Each
round consists of permutation and substitution transforma-
tions. A permutation transformation provides bit dispersion
of a plaintext which goes to the input of a round. An ide-
al variant is a bit permutation of the entire plaintext. But
the authors don’t know the algorithms that would implement
such a permutation transformation. Therefore, we use a local
permutation. One of the variants is the following one: a in-
put string is divided into l-bit blocks, and a transformation is
carried out under each of them.
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After a permutation transformation one of MV2-transfor-
mations is carried out, which is chose from the key according
to a random value R, that is obtained from a RNG. The
outputs of this transformation are the remainder and the flags.
As the remainder goes to the input of the next round, its
length should be divisible by n bit and a binary string should
be added to it in the general case.

Evaluation of output lengths
Let a message M, consisting of L n-bit binary strings

(codes of symbols of a plaintext) go to the input of the de-
vice. We denote mathematical expectations of the number of
symbols (n-bit binary strings) by E(L

(c)
m ) and E(L

(f)
m ), accord-

ingly, the cores and the total flags after executing m rounds
of the transformation.

If a random binary string consisting of Li−1 n-bit sub-
strings goes to the input of the ith round, then from the
statement 3.3, for the number of n-bit strings in the remainder
output L

(c)
i and that of the flag output L

(f)
i we have:

L
(c)
i ≈ Kc · L(c)

i−1,

Li(f) ≈ Kf · L(c)
i−1,

where (3.41) and (3.42) are coefficients introduced in the def-
initions 3.2 and 3.3.

Let’s assume that s n-bit binary strings are added to every
remainder, as strings obtained after an MV2 transformation
should be augmented by bits till their length is divisible by n,
and as in the general scheme it can be required to transmit the
number of the transformation chosen from the key. Therefore,

L
(c)
i ≈ Kc · L(c)

i−1 + s.

Similarly for the flags of the i-th round we have

L
(f)
i ≈ Kf · L(c)

i−1 + 1.
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Then at the m-th round (for great enough m) an estimated
number of symbols in the remainder is:

L(c)
m = Kc

m ·
(

L + s ·
m∑

i=1

Kc
−i

)
= Kc

m · L + s · 1 − Kc
m

1 − Kc
.

From which, using (3.43), we have

L(c)
m ≈ Kc

m · L +
1

Kf
· s. (4.1)

Then, an estimated number of symbols in the flag output
will be:

L(f)
m = Kf · L + Kf ·

m−1∑
i=1

(
L · Kc

i +
1 − Kc

i

Kf

· s
)

=

= (1 − Kc
m)L +

(
m − 1 − 1 − Kc

m

Kf

)
· s.

From where
L(f)

m ≈ L + m · s. (4.2)

If at encryption there is a requirement, that a number of
n-bit symbols in the core output shouldn’t exceed a threshold
Lc, then, due to (4.1), an estimated number of rounds mL is
roughly:

mL ≈ 1 +
log Lc − log L

log Kc

. (4.3)

From the statement 3.3 it follows, that at executing a
round of a transformation under a text the length of which is
L bytes with the probability no less than 1−L−2 the number
of n-bit symbols in the obtained remainder will be within the
limits of :

(Kc − σc/n) · L ≤ |C|/n ≤ (Kc + σc/n) · L,
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and the number of n-bit symbols in the obtained flags:

(Kf − σf/n) · L ≤ |F |/n ≤ (Kf + σf/n) · L,

where σc and σf are root-mean-square deviations of lengths
of output texts from evaluated average values.

Evaluation of a number of texts
when a core is known and flags are unknown

If a round permutation is fixed, then a set of texts giv-
ing the same remainder is only dependent on the substitution
transformation T ∈ Fr

n. As it is shown in 3.2, for a known re-
mainder Ci of the length |Ci| = l bit, the number of its preim-
ages for one round is determined by the expression (3.33).

Thus, if only the core is known, and there’s no limitations
for the number of rounds, then even if the keys are known
there’s an infinite set of texts giving such the core. At a
limited number of rounds a set of plaintexts that corresponds
to the given core is finite.

If an random text went to the input of every round, then
according to the theorem 3.1, it would be possible to consider
the remainder output as a uniform sequence. Let C be a
core after executing m rounds and let Nm be the number of
preimages of C. Then, to evaluate the number of preimages of
Nm one can use the inequality (3.49). Due to this inequality
we have:

log Nm >
1

Kc

|C|
n

+ . . . +
1

Kc
m

|C|
n

,

and

Nm ≥ 2
1−Kc

m

Kf
· |C|

n . (4.4)

Let NL be a number of texts corresponding to the known
core. Accordingly, if L is a number of symbols in a plaintext
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received at the system’s input is known, then for the evalua-
tion of NL from the inequality (4.4) we have

NL ≥ 2
1−Kc

m

Kf
·L

. (4.5)

4.2.2 Key

The key is an ordered set T1, T2, . . . , Tk ∈ Fr
n of MV2-

transformations. Every transformation can be set by a per-
mutation numbers from 0 to 2n −1 (see 3.1.2). Consequently,
the number of keys in key space is (2n!)k. Note, that the key
T1, T2, . . . , Tk can be generated from a short binary string (a
master of key). In this case the length of a master key can be
up to k · log(2n!) bits.

A round substitution transformation can be chosen from
the key by both a determined rule and randomly. If a sub-
stitution transformation is chosen at random at every round,
the general scheme will be a probabilistic cipher. But in this
case it’s necessary to transmit a reference to a transforma-
tion chosen from the key; it can be done, for instance, in the
remainder output.

It’s significant to note, that in the mentioned scheme a
substitution transformation is defined at a set of 2n elements,
and a number of various symbols from the alphabet {0, 1}n

being used in an input text may be considerably less than 2n.
It means that at performing m < k rounds the key won’t be
entirely used, and, consequently, is too big. If a substitution
transformation is chosen at random at every round, the key
will be entirely used at long life time.
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4.2.3 Randomization

in the general scheme of harming

Determinate cryptosystems have leak of information; for
example it’s easy for an adversary to determine a situation
when the same message is sent repeatedly. Another disadvan-
tage of these systems becomes apparent when little message
space is used. A brute force attack is possible in this case.
If a plaintext has a lot of ciphertexts it leads to additional
indeterminacy at a cryptanalysis.

In the suggested scheme accumulation of all output flags
obtained at each round takes place. It’s obvious, that a
total size of the flags of all rounds may be close to the
size of the plaintext at performing great enough number of
rounds. Though the statistics of flags is considerably differ-
ent from the one of an initial text, nevertheless a question
emerges: whether it’s possible to restore information accord-
ing to known flags only, for instance, on the basis of the anal-
ysis of frequency of symbols, especially at known keys. For
some families of texts this question can be answered posi-
tively, that gives concern for cryptographic resistance of the
suggested scheme.

In ciphersystems randomization of a plaintext [29] is used
to counteract attacks based on frequency analysis. Random-
ization is an old method and can be performed in different
ways. One of them is whitening from a random (pseudoran-
dom) number generator (RNG). A stream cipher, for example,
can be used as such a generator.

Using a stream cipher for whitening, firstly, leads to sub-
stitution of a message alphabet for an alphabet of this cipher,
and, secondly, counteracts attacks based on frequency analy-
sis.
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A general scheme also allows performing randomization of
a cipher if a substitution transformation is randomly chosen
from the key at every round. For this purpose a random
(pseudorandom) number generator (RNG) can be used. The
nature of a generator doesn’t matter for a cipher, therefore
any RNG, including a physical one, can be used.

When using a good GPS for the same plaintext km vari-
ous output texts are possible if m encryption rounds are per-
formed.

4.3 Two channel encryption

algorithm MV2

We have already mentioned that popular modern com-
puter systems work with data the minimal addressable unit
of which is a byte that equals eight bit. Consequently, it’s
reasonable to choose a parameter n, divisible by 8: 8, 16, 32,
... and so on at building a device of harming designed to work
in such systems.

On the basis of the scheme of harming suggested in 4.1 we
created a symmetric probabilistic cipher which implements
the universal mechanism of harming – the MV2 algorithm.

In this cipher encryption is executed according to the fol-
lowing algorithm:

Encryption

Input: a plaintext M (8 × L(bits))
a secret key K = T1, . . . , Tk, Ti ∈ F3

8

a number of rounds m
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BEGIN

C0 := M ; F := Λ; generate a pseudorandom number
R0;

using R0 generate an index j of substitution transfor-
mation;

C0 := Ri‖(C0⊕GPS(Tj)); // whitening of the plaintext

for i = 1; to i = m do // P rounds are executed;

1. Ci−1 := Mix(Ci−1) // a remainder of a previous
round is permuted block by block.

2. Generate a pseudorandom number Ri.

3. Generate (using Ri) an index j of a transformation.

4.
(
Ci, Fi

)
:= Tj(Ci−1) // the substitution transfor-

mation Tj is carried out. In the result we obtain a
new remainder Ci and flags Fi.

5. Ci = Ri‖Ci; F = Fi‖F.

end(for).

C = Cm;

END.

Output: a ciphertext
(
C , F

)
.

Decryption is executed according to the following algo-
rithm:
Decryption

Input: a ciphertext
(
C , F

)
a secret key K = T1, . . . , Tk, Ti ∈ F3

8
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BEGIN

Cm := C;

While (F �= Λ) do

1. Extract R from C; computer the index j from R;

2. Moving along Cm and F, choose pairs of images
(ci, fi), i = 0, 1, ...

3. For each pair (ci, fi), i = 0, 1, ... find a preimage
xi; set C := x0‖x1‖... .

4. We assign F a new position.

5. If (F = ∅)AND position Cm �= EOF then C =
’error message’.

6. C := ReMix(Cm) // reshuffle the result.

End(while).

If ( no ’error message’) Begin

Extract R from C; computer the index j from R;

C := Cm ⊕GPS(Tj) // whitening of the plaintext
is removed;

end (Begin)

M = C;

END;

Output: Error message
or a plaintext M (8 × L) bits.

This algorithm describes a general method of harming for
byte-oriented texts. The exact implementation of the MV2
algorithm and results of testing are described in 7.



Chapter 5

Statistical properties
of substitutional
transformations

5.1 S-box Properties

Since the S-boxes comprise the only nonlinear component
of an SPN, they are a crucial source of cryptographic strength.
S-box research has focused largely on determining which prop-
erties yield a cryptographically “good” S-box. Some of the
important properties are given below. In this section, we use
ei to denote a unit vector with 1 in position i, and w(v) to
mean the Hamming weight of vector v.

5.1.1 Completeness

In 1979, Kam and Davida defined the property of com-
pleteness for a bijective function f : {0, 1}t → {0, 1}t :
f is complete if for all i, j ∈ {0, 1, . . . , t − 1}, there exists
x ∈ {0, 1}t such, that f(x) and f(x ⊕ ei) differs in at least

72



Chapter 5. Properties of substitutional transformations 73

bit j (ei is the t-bit unit vector with a 1 in position i). That
is to say, every output bit depends upon every input bit. An
S-box is complete if it satisfies this property, and an SPN is
complete if it is a complete function from {0, 1}N to {0, 1}N

for every key. Kam and Davida gave an algorithm for con-
structing complete S-boxes, and specified a permutation to be
used in each round in order to achieve completeness after a
minimum number of rounds.

In research published in 1981 and 1982, F. Ayoub extend-
ed Kam and Davida’s study of permutations which produce
complete SPNs. He introduced a class of permutations, re-
ferred to as cryptographically equivalent permutations (CEP).
If a permutation belongs to CEP, and if N = an2 for some
a ∈ {1, 2, . . . , n}, then an N-bit SPN constructed using this
permutation and complete n × n S-boxes will satisfy com-
pleteness after a minimum number of rounds (two if a = 1
and three if 2 ≤ a ≤ n).

Ayoub also investigated the possibility of using the key
to construct a random permutation used in all the rounds,
and proved that there is a high probability that the resulting
SPN will be complete after a minimum number of rounds.
Moreover, Ayoub suggested the possibility of designing SPNs
in which both the S-boxes and the permutation are generated
in a pseudo-random fashion from the key, and claimed that
such an approach would not weaken the security of the SPN.
We investigate the idea of using key-dependent S-boxes in an
SPN.

5.1.2 Bit Independence

Webster and Tavares, in the paper in which they intro-
duced SAC [53], also defined a property called the bit inde-
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pendence criterion (BIC). A function f : {0, 1}t → {0, 1}t

satisfies BIC if for all i, j, k ∈ {0, 1, . . . , t − 1} with j �= k,
inverting input bit i causes output bits j and k to change
independently. We say f satisfies maximum order BIC (MO-
BIC) if the same output bit independence holds whenever an
input change consisting of one or more bits occurs.

5.1.3 Nonlinearity

A function f : {0, 1}t → {0, 1} is called affine if there
exist constants ai ∈ {0, 1}, for i = 0, 1, . . . , t, such that for all
X = xt−1 . . . x1x0 ∈ {0, 1}t,

f(X) = at ⊕ at−1xt−1 ⊕ · · · ⊕ a1x1 ⊕ a0x0.

An affine function is called linear if at = 0. S-boxes with
“high nonlinearity” are needed to make an SPN immune to
linear cryptanalysis, introduced in 1993 by M. Matsui [32].
Linear cryptanalysis attempts to find a linear equation relat-
ing plaintext, ciphertext and key bits, i.e., it looks for indices
i1, i2, . . . , ib, j1, j2, . . . jc, and l1, l2, . . . , ld, such that

Pi1⊕Pi2⊕· · ·Pib ⊕Cj1⊕Cj2⊕· · ·⊕Cjc = Kl1⊕Kl2⊕· · ·⊕Kld .

Pi1⊕Pi2⊕· · ·Pib ⊕Cj1⊕Cj2⊕· · ·⊕Cjc = Kl1⊕Kl2⊕· · ·⊕Kld .

If the bits in this equation are assigned at random, the
equation will be satisfied with probability exactly 1/2. Mat-
sui’s attack exploits the situation in which this equation is
satisfied with probability significantly more or less than 1/2.

We can quantify the term ”high nonlinearity” as follows.
Let At be the set of all affine functions g : {0, 1}t → {0, 1}.
For f : {0, 1}t → {0, 1}, we define the nonlinearity of f, nl(f)
as

nl(f) = min
g∈At

wt(f ⊕ g)
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(in this expression, we view f and g as 2t-bit vectors). Clear-
ly nl(f) measures the distance of f from the closest affine
function. If S is an S-box, let L be the set of all linear com-
binations of the columns of S. Then the nonlinearity of S is

nl(S) = min
l∈L\0

nl(l).

It is not hard to see that all vectors l ∈ L\0 and g ∈ At\0
are balanced. It follows that nl(l) is always even. Also, if
g ∈ At \ 0 is a linear function, and g is the affine function
which is the bitwise complement of g, then

wt(l ⊕ g) = 2n − wt(l ⊕ g),

and therefore nl(S) ∈ {0, 2, 4, . . . , 2n−1}.
In 1983, Gordon and Retkin [18] showed that the proba-

bility that a randomly chosen invertible n × n S-box has one
or more output bits which are linear functions of the input
bits is

2n(2n − 1)(2n−1!)2

2n!
.

Experimental results support the theoretical result. For
example, Heys [20] generated 200 random invertible 8 × 8 S-
boxes and found that each satisfied 86 ≤ nl(S) ≤ 98.

5.1.4 XOR Table Distribution

In 1991, Biham and Shamir introduced a powerful crypt-
analytic technique known as differential cryptanalysis [4].
They have successfully applied their attack to a variety of SP-
Ns. Differential cryptanalysis requires knowledge of the XOR
tables of the S-boxes. For an n×n S-box, S, the XOR table of
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S has rows and columns indexed by 0, 1, . . . , 2n−1, and the ta-
ble entries are defined as follows. If i, j ∈ {0, 1, 2, . . . , 2n −1},
position [i, j] in the XOR table p contains the value

p(i, j) = |{X ∈ {0, 1}n : S(X) ⊕ S(X ⊕ i) = j}|

(we are treating i and j as their equivalent n-bit strings). It
can be shown that p(i, j) always evaluates to an even number.
The pair (i, j) is called an input/output XOR pair. Differen-
tial cryptanalysis exploits such XOR pairs with large XOR
table entries. An SPN can be secured against differential
cryptanalysis by selecting S-boxes with low XOR table en-
tries, ideally all 0 or 2 (the one exception is entry (0,0) which
has value 2n). Even if the XOR table is not directly calculat-
ed, resistance to differential cryptanalysis can be achieved by
assuring that the S-boxes have good diffusive properties, i.e.,
they reasonably satisfy AVAL or SAC.

If S is a randomly chosen invertible n × n S-box, and
0 ≤ A ≤ 2n is an even integer, a formula of Youssef and
Tavares [56] gives an upper bound on the probability that
the maximum XOR table entry of S (denoted maxXOR(S))
is ≥ A. For example, if n = 8 and A = 16, we have
prob[maxXOR(S) ≥ 16] ≤ 0.0042.

5.2 Properties of Random S-boxes

Since the object of this proposal is a new cipher using key-
dependent S-boxes, it will be useful to investigate the average
properties of random invertible n×n S-boxes. A series of com-
binatorial results have demonstrated that a randomly chosen
s-box of sufficient size will possess several of these desirable
properties with high probability.
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5.2.1 Completeness

O’Connor proved that a randomly chosen n× n invertible
S-box has a high probability of being complete for sufficiently
large n. In fact, he showed that the probability that such an
S-box is not complete is

o

( √
2n

22n−1+n+1

)
.

For an exact formula, see [34].

5.2.2 Avalanche and Strict Avalanche

The authors have not found any results giving the prob-
ability that a random invertible n × n S-box satisfies AVAL
or SAC (although there are bounds on the probability that
a random function f : {0, 1}t → {0, 1} satisfies SAC). On
the other hand, a number of theoretical and experimental re-
sults exist concerning the AVAL property for SPNs. Heys and
Tavares developed a probabilistic model for the AVAL prop-
erty of an SPN. Their results for N = 64 and n = M = 8,
using randomly selected S-boxes and the fixed permutation of
Kam and Davida, indicate that AVAL is reasonably satisfied
after 5 or more rounds. In fact, if ER is the expected number
of output bit changes after R rounds when one input bit is
flipped, and we define ε = |1 − ER/(N/2)|, then ε ≤ 10−5 for
R ≥ 7.
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5.2.3 Nonlinearity

For an invertible n × n S-box S and an integer 2L(0 ≤
L ≤ 2n−2), Youssef and Tavares prove that

prob[nl(S) ≤ (2n−1 − 2L)] <

<
2(2n−1!)2(2n − 1)2

2n!

2n−2∑
i=L

(
2n−1

2n−2 + i

)2

.

If n = 8, we have, for example, prob[nl(S) ≤ 64] <
1.4 · 10−11 and prob[nl(S) ≤ 80] < 4.6 · 10−5. Experimen-
tal results support the theoretical result of (3). For example,
Heys generated 200 random invertible n×n S-boxes and found
that each satisfied 86 ≤ nl(S) ≤ 98.

5.2.4 XOR Table Distribution

If S is a randomly chosen invertible n × n S-box, and
0 ≤ A ≤ 2n is an even integer, a formula of Youssef and
Tavares gives the probability that the maximum XOR table
entry of S (denoted maxXOR(S)) is ≥ A. For example, if
n = 8 and A = 16, we have

prob[maxXOR(S) ≥ 16] ≤ 0.0042.

5.2.5 Cyclic Properties

There is some indication that the cyclic properties (cycle
length, number of cycles) of an S-box are related to other
cryptographic properties. Youssef et al. give experimental
results which show that, on average, S-boxes with fewer fixed
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points have higher nonlinearity and lower maximum XOR ta-
ble entries. They prove that the expected number of fixed
points for a random invertible S-box is 1, with a variance of
1. They also state that the expected value and variance of
the number of cycles is approximately ln 2n ≈ 0.69n; and that
the expected cycle length is 2n−1 + 1/2, where the expected
cycle length is defined as the value of the length of the cycle
to which a randomly chosen element belongs.

5.3 Dependence criteria

For substitution-permutation networks usually use some
criteria what is known as dependence criteria. They are des-
tined for evaluation a security S-Boxes. In this section, we
shall state the definitions as given in [48].

For a binary string x = (x1, . . . , xn) ∈ (GF (2))n, the bina-
ry string x(i) ∈ (GF (2))n denotes the binary string obtained
by complementing the i-th bit of x (for i = 1, . . . , n). The
Hamming weight w(x) of x is defined as the number of nonze-
ro components of x. A function f : (GF (2))n → (GF (2))m of
n input bits into m output bits is said to be complete, if each
output bit depends on each input bit, i.e.

∀i = 1, . . . , n ∀j = 1, . . . , m ∃x ∈ (GF (2))n

with
(
f(x(i))

)
j
�=
(
f(x)

)
j

Feistel [15] has defined a property of a s-block and SPN
called avalanche effect (AVAL). A function f : (GF (2))n →
GF (2))m satisfies AVAL property if whenever one input bit is
changed, an average half of output bits change, i.e.,
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1

2n

∑
x∈(GF (2))n

w(f(x(i)) − f(x)) =
m

2
for all i = 1, . . . , n.

In 1985, Webster and Tavares combined the completeness
and avalanche properties into the strict avalanche criterion
(SAC). A function f : {0, 1}t → {0, 1}t satisfies SAC if for all
i, j ∈ {0, 1, . . . t − 1}, flipping input bit i changes output bit
j with probability exactly 1/2. It is easy to demonstrate that
a function f which satisfies SAC is complete, and satisfies
AVAL.

A function f : (GF (2))n → GF (2))m satisfies SAC if after
changing one input bit, each output bit changes with proba-
bility 1/2, i.e.

∀ i = 1, . . . , n ∀ j = 1, . . . , m Pr((f(x(i)))j �= (f(x))j) =
1

2
.

The dependence matrix of the function f : (GF (2))n →
GF (2))m is an n×m matrix A with elements aij equal to the
number of inputs for which complementing the i-th input bit
results in a change of the j-th output bit, i.e.

aij = #{x ∈ (GF (2))n | (f(x(i)))j �= (f(x))j} (5.1)

for i = 1, . . . , n and j = 1, . . . , m.
The distance matrix of a function f : (GF (2))n →

GF (2))m is n × (m + 1) matrix B with elements bij equal
to the number of inputs, for which complementing the i-th
input bit results in a change of j output bits, i.e.

bij = #{x ∈ (GF (2))n | w(f(x(i)), f(x)) = j} (5.2)

for i = 1, . . . , n and j = 0, . . . , m.



Chapter 5. Properties of substitutional transformations 81

Obviously, at the input size n > 30 due to limits of mem-
ory resources it’s not possible to compute matrices of depen-
dence and distance for all possible inputs. Therefore, one
usually considers a ”suitable” number of randomly chosen in-
puts. The dependence and distance matrices are then defined
as follows:

aij = #{x ∈ X | (f(x(i)))j �= (f(x))j} (5.3)

for i = 1, . . . , n, j = 1, . . . , m, and

bij = #{x ∈ X | w(f(x(i)), f(x)) = j}, (5.4)

where X is a ”suitable” randomly chosen subset of (GF (2))n.
Assume we’ve computed the dependence matrix A and the

distance matrix B of a function f : (GF (2))n → GF (2))m for
a set of inputs X, where X is either (GF (2))n, or a random
subset of (GF (2))n.

The degree of completeness of a function f is defined as

dc = 1 − #{(i, j)|aij = 0}
nm

. (5.5)

The degree of avalanche effect of a function f is

da = 1 − 1

nm
·

n∑
i=1

∣∣∣∣∣ 2

#X

m∑
j=1

j · bij − m

∣∣∣∣∣ . (5.6)

The degree of strict avalanche criterion of a function f is
defined as

dsa = 1 − 1

nm
·

n∑
i=1

m∑
j=1

∣∣∣∣2aij

#X
− 1

∣∣∣∣ . (5.7)

For the function f to have good degrees of completeness,
avalanche effect, and strict avalanche criterion, the numbers
dc, da, and dsa must satisfy

dc = 1, da ≈ 1, dsa ≈ 1.
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It is known [24], that affine and linear functions don’t sat-
isfy a strict avalanche criterion. Nowadays it’s considered that
a good cryptographic function should satisfy a strict avalanche
criterion ( [24, 25, 48] etc. ).

5.4 Dependence criteria

for mappings

with variable length outputs

5.4.1 Metric at a set of functions

with images of various length

As is well known, a metric at a set X is a function d :
X × X → R, possessing the following features:

1. for any x, y ∈ X d(x, x) = 0 if and only if x = y;

2. for any x, y ∈ X the following is performed: d(x, y) =
d(y, x) (symmetry);

3. for any x, y, z ∈ X the triangle inequality is performed:

d(x, y) ≤ d(x, z) + d(z, y).

Usually a metric known as the Hamming distance is used
at research of mappings with a fixed image length at a set
{0, 1}n :

Let x and y be n-bit binary strings, where xi, yi ∈ {0, 1}
define the corresponding i-th binary bit.

D e f i n i t i o n 5.1 The Hamming distance between the
binary strings x and y ∈ {0, 1}n is the number:

w(x, y) =
n∑

i=1

xi ⊕ yi. (5.8)
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At a set of binary strings of variable length one can intro-
duce a metric similar to the Hamming distance.

D e f i n i t i o n 5.2 The distance between the binary strings
x and y ∈ Urm is the number

h(x, y) = w(xk, yk) +
∣∣|x| − |y|∣∣, (5.9)

where k = min{|x|, |y|}, and xk and yk denote k-bit bina-
ry strings, the corresponding bits of which coincide with the
corresponding bits of the binary strings x and y.

Proof of correctness of introducing a metric. We
shall prove that the function h introduced in the definition
5.2 is a metric at the set Urm.

It’s obvious, that the first and the second points of the
metric definition are performed for the function h, therefore
to prove h is a metric at a set of binary strings of various
length, it’s necessary to prove performing of triangle inequal-
ity.

We shall take arbitrary binary strings x, y, z. Let k =
min{|x|, |y|, |z|}.

Denote through xk, yk and zk – k-bit binary strings, the
corresponding bits of which coincide with the corresponding
bits of the binary strings x, and y and z.

The Hamming distance w is a metric, therefore the follow-
ing is performed:

w(xk, yk) ≤ w(xk, zk) + w(zk, yk).

Lengths of the binary strings – |x|, |y| and |z| are integer
nonnegative numbers, therefore the triangle inequality is true
for them : ∣∣|x| − |y|∣∣ ≤ ∣∣|x| − |z|∣∣ + ∣∣|z| − |y|∣∣.
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As
h(x, z) = w(xk, zk) +

∣∣|x| − |z|∣∣,
h(y, z) = w(zk, yk) +

∣∣|z| − |y|∣∣.
then

h(x, y) ≤ h(x, z) + h(z, y).

�.

5.4.2 Defining dependence criteria

for substitution transformations
with a variable length output

The expressions (5.5), (5.6) and (5.7) are cited for the
mappings f : {0, 1}n → {0, 1}m. An MV2-transformation is
used as a substitution transformation in the general scheme.
This transformation is a pair of mappings with images of var-
ious length g : {0, 1}n → ⋃

i

{0, 1}i. In general, output lengths

don’t coincide for such a transformation, i.e.:

g(x1) = y1 ∈ {0, 1}i , g(x2) = y2 ∈ {0, 1}j, i �= j.

The Hamming distance is used in dependence criteria to
measure the degree of difference of binary strings. Using de-
pendence criteria for research of the general scheme of harm-
ing requires reconsidering definitions and formulae for com-
puting distance and dependency matrixes. We defined its
analogue for variable length mappings ( see the definition 5.2
from i. 5.4.1).

During the test we shall use the following formulae to cor-
respond to dependence criteria:

bij = |{x ∈ X | h(g(x(i)), g(x)) = j}|, (5.10)
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da = 1 − 1

mn
·

n∑
i=1

∣∣∣∣∣ 2

#X

mi∑
j=1

j · bij − mi

∣∣∣∣∣ , (5.11)

dsa = 1 − 1

mn
·

n∑
i=1

mi∑
j=1

∣∣∣∣2aij

#X
− 1

∣∣∣∣ , (5.12)

where mi = max{|g(x(i))| : x ∈ X} – the maximal output
length at changing the i-th bit, and m = max

i
{mi}.

Similarly, in the expressions (5.11) and (5.12) instead of
the maximal lengths of mi output one can take the average
output lengths:

m̃i =
1

#X

∑
x∈X

|g(x(i))|.

In this case the expressions (5.11) and (5.12) will look like:

d̃a = 1 − 1

mn
·

n∑
i=1

∣∣∣∣∣ 2

#X

mi∑
j=1

j · bij − m̃i

∣∣∣∣∣ , (5.13)

d̃sa = 1 − 1

mn
·

n∑
i=1

mi∑
j=1

∣∣∣∣2aij

#X
− 1

∣∣∣∣ , (5.14)

where m = max
i

{m̃i}.
In Fig. 5.1 there are charts of results of testing the basic

implementation of the MV2 encryption algorithm (see Ap-
plication 7) for correspondence to a strict avalanche criteria.
One can see from the chart that values computed at using the
average lengths according to the formulae (5.14) are greater
than those computed according to the formulae (5.12) at using
the maximal output lengths.

The expressions (5.11, 5.12) and (5.13, 5.14) reflect more
precisely the specific character of the transformation, than
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Figure 5.1: Dependence of the degree of a strict avalanche criterion
dsa and d̃sa (Avr) on a number of rounds at different output lengths (16,
32, 64, 128 and 256 bytes)

(5.6) and (5.7), but still add some error in the ”tails” of strings
of distance and dependence matrices.

It’s connected to the fact, that in the basic expressions
(5.6) and (5.7) the normalization coefficient 1/mn due to the
mapping properties is used correctly. Therefore, the absolute
values of the degrees da and dsa reflect quality of cryptographic
transformations. In case with variable length transformations
the normalization coefficients used in formulae (5.11), (5.12),
(5.13) and (5.14) are not exactly correct. For different classes
of transformations at such normalizations various hard errors
are included, which make the degree value less. In the given
case these criteria can serve for comparison of cryptographic
transformations of the same class.

In 7 the results of testing of one of the implementations
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of the general scheme for compliance with dependence crite-
ria are given. The analysis of the results (see 7.4) let choose
permutation transformations, evaluate influence of whitening,
and the value of a pseudorandom choice of substitution trans-
formations. Besides, testing for compliance with dependence
criteria confirmed the supposition about increase of the algo-
rithm efficiency at increasing a plaintext length.



Chapter 6

Security Models

To precisely quantify the security of a cipher, and thus
prove that it fulfills given security requirements, is an ex-
tremely difficult task with nowadays knowledge (ultimately,
one should not forget that up to now, very little can be
proved with respect to the practical security of ciphers). A
first task consists in defining the precise security model in
which one would like to prove the security of a primitive. A
rather intuitive definition of the security of a cipher is the
K-security concept of Daemen and Rijmen [9]; obviously, this
definition is extremely difficult to work with in a mathemati-
cal sense.

Definition (K-Security). A cipher is K-secure if all
possible attack strategies for it have the same expected work
factor and storage requirements as for the majority of possible
ciphers with the same dimensions. This must be the case for
all possible modes of access for the adversary (known / chosen
/ adaptively chosen plaintext / ciphertext, known / chosen /
adaptively chosen key relations, ...) and for any a priori key
distribution.

The NESSIE project [42] considered furthermore two addi-
tional informal (but pragmatic) security models, namely prac-
tical security and historical security: in the first model, which
includes most of the cryptanalysis performed nowadays, a ci-

88



Chapter 6. Security Models 89

pher is considered secure if the best-known attack requires too
much resources by an acceptable margin. It is a very prac-
tical model as one can test the cipher with different known
attacks and assess a certain security level to it. However, it is
not possible to predict the security of the underlying cipher
with respect to yet unknown attacks. The historical security
of a cipher is derived according to the amount of cryptana-
lytic work on the ciphers performed over the years. An old
cipher which resists to all cryptanalytical attacks since a long
time will inevitably inspire a larger security feeling than a new
cipher which has not been extensively cryptanalysed.

6.1 The security of classical ciphers

In his seminal paper about cryptography, Shannon [52]
introduced a model of security known as perfect security or
unconditional security. In this very strong model, one assumes
that the adversary is infinitely powerful, but restricted to a
ciphertext-only attack.

Let M be a plaintext, K will be a key and Y = E(M, K)
will be a cryptogram. C. Shannon formulated a property of a
perfect security as

H(M) = H(X|Y )

and showed that the following inequality should be performed
for a perfect cipher:

H(K) ≥ H(M).

In this model it is supposed that a cryptanalyst has a
possibility to observe a cryptotext X.



90 MV2 cryptographic algorithm

For practical cipher resistance it’s required that the in-
equality

H(K|Y ) ≥ α, H(M |Y ) ≥ α.

is performed for values of the conditional entropies H(K|Y )
H(M |Y ), Nowadays for practical cipher resistance it’s consid-
ered that the value

α > 80.

6.2 Security of two-channel ciphers

We shall consider the cipher described in 1.2. Its usage
modes are enumerated in part 2.1.

1. The key K is transmitted via a secure channel, and the
outputs YDT, YD – via an open channel. As a cryptan-
alyst has a possibility to observe both the output YDT

and YD, this case is similar to that are of a classical
symmetric system considered by Shannon.

2. The key K and the output YDT are transmitted via a se-
cure channel, and the output YD – via an open channel.
In this case an adversary cryptanalyst observes only a
part of a cryptotext, and it’s obvious that in this case for
perfect security it’s necessary to perform the equality

H(M) = H(M |YD).

And for practical security the necessary condition is

H(M |YD ≥ α.)

3. The output YDT is transmitted via a secure channel, and
the key K and the output YD – via an open channel. In
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this case an adversary cryptanalyst observes only a part
of a cryptotext and the key K, therefore, it’s evident,
that in this case for perfect security it’s necessary to
perform the equality

H(M) = H(M |YDK).

And for practical security the necessary condition is

H(M |YDK ≥ α.)

4. The key K and the output YD are transmitted via a se-
cure channel, and the output YDT – via an open channel.
In this case an adversary cryptanalyst observes only a
part of a ctyptotext, and in this case for perfect security
it’s necessary to perform the equality

H(M) = H(M |YDT).

And for practical security the necessary condition is

H(M |YDT ≥ α.)

5. The output YD is transmitted via a secure channel, and
the key K and the output YDT – via an open channel. In
this case an adversary cryptanalyst observes only a part
of a ctyptotext and the key K, therefore, in this case for
perfect security it’s necessary to perform the equality

H(M) = H(M |YDTK).

And for practical security the necessary condition is

H(M |YDTK ≥ α.)
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6. The key K and a plaintext M are transmitted via a
secure channel, and the outputs YDT, YD – via an open
channel. This case is similar to that one of a classical
symmetric system considered by Shannon.

7. The key K and the output YDT are transmitted via a
secure channel, and the output YD and a plaintext M
– via an open channel. In this case the condition of
perfect security can be formulated in form of

H(K) = H(K|YDM),

and condition of practical security

H(K) = H(K|YDM) ≥ α.

If a cryptanalyst solves the problem of defining the out-
put YDT only, then for perfect security it’s necessary to
perform the equality

H(YDT) = H(YDT|YDM),

and for the practical one –

H(YDT|YDM) ≥ α.

8. The output YDT and a plaintext M are transmitted via
a secure channel, and the key K and the output YD – via
an open channel. In this case the condition of perfect
security can be formulated in form of

H(M) = H(M |YDK),

and condition of practical security

H(M) = H(M |YDK) ≥ α.
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If a cryptanalyst solves the problem of defining the out-
put YDT only, then for perfect security it’s necessary to
perform the equality

H(YDT) = H(YDT|YDK),

and for the practical one –

H(YDT|YDK) ≥ α.

9. The key K and the output YD are transmitted via a
secure channel, and the output YDT and a plaintext M
– via an open channel. In this case the condition of
perfect security can be formulated in form

H(K) = H(K|YDTM),

and condition of practical security

H(K) = H(K|YDTM) ≥ α.

If a cryptanalyst solves the problem of defining the out-
put YD only, then for perfect security it’s necessary to
perform the equality

H(YD) = H(YD|YDTM),

and for the practical one –

H(YD|YDTM) ≥ α.

10. The output YD and a plaintext M are transmitted via a
secure channel, and the key K and the output YDT – via
an open channel. In this case the condition of perfect
security can be formulated in form

H(M) = H(M |YDTK),
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and condition of practical security

H(M) = H(M |YDTK) ≥ α.

If a cryptanalyst solves the problem of defining the out-
put YD only, then for perfect security it’s necessary to
perform the equality

H(YD) = H(YD|YDTK),

and for the practical one –

H(YD|YDTK) ≥ α.

6.3 General information ratio

for two-channel systems

Let M be a random message from a set of messages M, K
will be a key which is chosen at random and uniformly from
the set K, and YDT and YD will be outputs according to the
system (1.2).

Entropies of inputs, outputs and keys of two-channel sys-
tems formed in accordance with the system (1.2) are inter-
connected by the following general information ratios:

H(M, YDT, YD, K) =
= H(MK) + H(YDTYD|MK) =
= H(M) + H(K) =
= H(YDTYD) + H(KM |YDTYD) =
= H(YDTYD) + H(K|YDTYD).

(6.1)

From where we get

H(YDTYD) + H(K|YDTYD) = H(M) + H(K) (6.2)
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For the joint entropy YDT, YD and K we have

H(YDTYDK) = H(YDTYD) + H(K|YDTYD) =
= H(YDT) + H(YD|YDT) + H(K|YDTYD) =
= H(YD) + H(YDT|YD) + H(K|YDTYD) =
= H(K) + H(YDTYD|K) =
= [ from (6.2)] = H(M) + H(K).

(6.3)

Then
H(YDTYD|K) = H(M). (6.4)

For joint entropy of the input M , the output YDT and the
key K YD the following is performed

H(MYDTK) = H(YDT) + H(MK|YDT) =
= H(YDT) + H(M |YDT) + H(K|YDTM) =
= H(YDT) + H(K|YDT) + H(M |YDTK) =
= H(M) + H(YDTK|M) =
= H(M) + H(YDT|M) + H(K|YDTM) =
= H(M) + H(K);

(6.5)

For joint entropy of the input M , the output YD and the
key K the following is performed

H(MYDK) = H(YD) + H(MK|YD) =
= H(YD) + H(M |YD) + H(K|YDM) =
= H(YD) + H(K|YD) + H(M |YDK) =
= H(M) + H(YDK|M) =
= H(M) + H(YD|M) + H(K|YDM) =
= H(M) + H(K).

(6.6)
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6.4 Analysis of the general scheme

security at unknown flag output

If the flag output is unknown, the following problems are
typical for an attacker:

1. An attacker knows the output YDT.

1.a) Find the plaintext M ;

1.b) Find the key K;

1.c) Find the output YD;

1.d) Find the plaintext M and the key K;

1.e) Find the plaintext M and the output YD;

1.f) Find the key K and the output YD;

1.g) Find the plaintext M , the key K and the output
YD.

2. An attacker knows the output YDT and the key K.

2.a) Find the plaintext M ;

2.b) Find the output YD;

2.c) Find the plaintext M and the output YD;

3. An attacker knows the output YDT and the correspond-
ing plaintext M .

3.a) Find the key K;

3.b) Find the output YD;

3.c) Find the key K and the output YD;

4. An attacker knows the output YDT, the key K and the
plaintext M .
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4.a) He needs to determine the output YD.

Note, that there’s no need to consider all problems, be-
cause if an attacker can’t solve a problem where one of the
components needs to be determined, he can’t solve a corre-
sponding problem where several components need to be de-
termined.

The problem 1.a, is not more difficult than the problems
1.d, 1.e, 1.g.

The problem 1.b, is not more difficult than the problems
1.d, 1.f, 1.g.

The problem 1.c, is not more difficult than the problems
1.e, 1.f, 1.g.

The problem 2.a, is not more difficult than the problem
2.c.

The problem 2.b, is not more difficult than the problem
2.c.

The problem 3.a, is not more difficult than the problem
3.c.

The problem 3.b, is not more difficult than the problem
3.c.

As H(M |YDT) ≥ H(M |YDTK), then the problem 1.a is
not easier than the problem 2.a.

Due to H(K|YDT) ≥ H(K|YDTM), the problem 1.b is not
easier than the problem 3.a.

Similarly, due to H(YD|YDT) ≤ H(YD|YDTK) the prob-
lem 1.c is not easier than the problem 2.b, and due to
H(YD|YDT) ≤ H(YD|YDTM) the problem 1.c is not easier than
the problem 3.b.
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As the following ratios are performed

H(YD|YDTK) ≥ H(YD|YDTKM),
H(YD|YDTM) ≥ H(YD|YDTKM),

then the problems 2.b and 3.b are not easier than the problem
4.a.

We shall evaluate complexity of solving the problems put
in front of an attacker.

To do that we shall assume that a round permutation is
fixed. In this case a set of texts giving the same remainder at
every transformation round is determined by the used substi-
tution transformation T ∈ Fr

n. only.
Problem 4.a.
Let us know the plaintext M , the key K and the remainder

output YDT. If at each round a substitution transformation is
chosen according to the deterministic rule, then an attacker
will definitely determine the flags, i.e. H(YD|YDTKM) = 0.

We shall consider a case when a round substitution trans-
formation is randomly chosen from an known key. In this case
an attacker can evaluate the number of performed rounds m
by the formula (4.3). For this case from the ratio (6.3) we have
H(YD|YDT) = m · log(k) − H(YDT). If the length of the out-
put YDT is large enough, then in the general case an attacker
has, km variants of pairs (YDT, YD) and with probability close
to 1, there’s the only pair with the set core among the vari-
ants. Note that with increase of m, entropy H(YDT) decreas-
es. Therefore, required security of the cipher can be obtained
thanks to increasing the number of performed rounds.

Problem 2.b.
Let the key K and the remainder output YDT be known.

If at each round a substitution transformation is chosen by
the deterministic rule, then from the ratio (6.3) we have

H(YD|YDT) = H(M) − H(YDT).
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If a round substitution transformation is randomly chosen
from a known key, then the conditional entropy

H(YD|YDT) = m · log(k) + H(M) − H(YDT).

Consequently, the required security of the cipher can
be obtained thanks to increasing the number of performed
rounds.

Problem 2.a.
Let the key K and the remainder output YDT be known.

If the plaintext M is unknown and the number of performed
rounds m is unknown, then for the known core YDT even at
known keys K there’s an infinite set of texts at which you
can get such a core. At the limited number of rounds a set
of texts corresponding to the given core is finite. Further we
shall assume that an attacker knows the number of performed
rounds m.

We shall evaluate the number of texts having the same
remainder.

In the considered scheme an MV2-transformation is per-
formed at each round. As it is shown in 3.2, for the known
core C of the length |C| = l bits, the number of its preimages
for one round is determined by the expression (3.33).

As whitening is used at the scheme input, then, according
to the theorem 3.1, the remainder output can be considered
as a uniform sequence. Therefore, for evaluating the number
of preimages Nm of the core C after performing m rounds of
the scheme one can use the inequality (3.49). Due to this
inequality we have:

log Nm >
1

Kc

|C|
n

+ . . . +
1

Kc
m

|C|
n

,

From where we have:

Nm ≥ 2
1−Kc

m

Kf
· |C|

n . (6.7)
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Accordingly, if L is the number of symbols in the plaintext
which went to the scheme input is known, then to evaluate
NL is the number of texts corresponding to the known core
from the inequality (6.7) we have

NL ≥ 2
1−Kc

m

Kf
·L

. (6.8)

Thus, complexity of recovering the plaintext at known keys
can be evaluated as

H(M |YDTK) = O(
1 − Kc

m

Kf
· L).

Problem 3.a.
Let the plaintext M and the remainder output YDT are

known. In this case from the ratios (6.5) we have:

H(K|YDTM) = H(K) − H(YDT).

If each transformation Ti from the key K is at random and
uniformly chosen from a set of the transformations Fr

n, then
entropy H(K) = k·log(2n!), using the Stirling formula we have
H(K) ≈ k · ((n − 1.443) · 2n + n+1

2
+ 0.826) ≥ k · (n − 2) · 2n.

In this case, for secure use at n ≥ 8 it’s enough to require
performing such the number of rounds that for the core length
the following would perform |YDT| ≤ (k − 1)(n − 3) · 2n bits.

If a round substitution tramsformation is chosen at ran-
dom from the key K, then for each m-round encryption of a
message M entropy of the real key K∗ will equal H(K∗) =
H(K) + m · log k.
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6.5 Analysis

of the general scheme security

at unknown core output

If the core output is unknown, then the following problems
are typical for an attacker:

5. An attacker knows the output YD.

5.a) Find the plaintext M ;

5.b) Find the key K;

5.c) Find the output YDT;

5.d) Find the plaintext M and the key K;

5.e) Find the plaintext M and the output YDT;

5.f) Find the key K and the output YDT;

5.g) Find the plaintext M , the key K and the output
YDT.

6. An attacker knows the output YD and the key K.

6.a) Find the plaintext M ;

6.b) Find the output YDT;

6.c) Find the plaintext M and the output YD;

7. An attacker knows the output YD and the corresponding
plaintext M .

7.a) Find the key K;

7.b) Find the output YDT;

7.c) Find the key K and the output YDT;
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8. An attacker knows the output YD the key K and the
plaintext M .

8.a) He needs to determine the output YDT.

Note, that there’s no need to consider all problems, be-
cause if an attacker can’t solve a problem where one of the
components needs to be determined, he can’t solve a corre-
sponding problem where several components need to be de-
termined.

The problem 5.a, is not more difficult than the problems
5.d, 5.e, 5.g.

The problem 5.b, is not more difficult than the problems
5.d, 5.f, 5.g.

The problem 5.c, is not more difficult than the problems
5.e, 5.f, 5.g.

The problem 6.a, is not more difficult than the problem
6.c.

The problem 6.b, is not more difficult than the problem
6.c.

The problem 7.a, is not more difficult than the problem
7.c.

The problem 7.b, is not more difficult than the problem
7.c.

As whitening of the plaintext by a stream cipher takes
place before performing main transformation rounds, one can
assume that the plaintext consists of symbols that are cho-
sen equiprobably from {0, 1}n. In this case at analysis of the
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flags output H(M) = n · L. Then after performing the first
round in the output we have the flag F1 and the remainder
C1, for which H(F1) = Kf · n · L, and H(C1) ≥ Kc · n · L.
Due to the theorem about distributing bit remainder, an ob-
tained remainder looks like a uniform text. And due to the
statement about mathematical expectation of the remainder
length |C1| = Kc · n · L. From where

H(YD) ≥ n · L · (1 − Kc
m). (6.9)

Note that if in the general scheme of the cipher a substi-
tution transformation is chosen at random from the fixed key
K, then, there are km variants of the real key at performing
m rounds of the algorithm for the set key K. Consequently,
at equiprobqble choice of variants for entropy of the real key
used for the encryption Kin the following is performed

H(Kin) = H(K) + m · log k. (6.10)

To determine complexity of these problems we shall use
general information dependencies (6.2) – (6.4), (6.6).

From (6.3) we have:

H(YD)+H(YDT|YD)+H(K|YDTYD) = H(M)+H(K). (6.11)

From (6.6) we have:

H(YD) + H(M |YD) + H(K|YDM) = H(M) + H(K). (6.12)

Problem 8.a.
Let the plaintext M , the key K and the remainder output

YD be known. If at each round a substitution transformation is
chosen by the deterministic rule, then an attacker will exactly
determine the core.

Let a round substitution transformation be chosen from a
known key. If a cryptanalyst knows the flags output YD, the
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key K and the plaintext M, then he can exactly determine
the remainder output. Indeed, the key K consists of k MV2-
transformations Ti = (ci, fi), at that k � #F, therefore, the
probability that among flags transformations there will be at
least 2 identical of them is

1 − #F · (#F − 1) · . . . · (#F − s + 1)

(#F)s
≈ 0,

where #F can be found by the formula (3.3).

Then comparing M and the first flags one can determine
the transformation Ti1 which was used to obtain them, and
consequently, get the remainder of the first round. A remain-
der of the first round is an input text of the second round,
therefore, comparing it with the second flags one can deter-
mine the transformation Ti2 which was used to obtain them,
and so on... till we shall get a remainder of the last round
that is the required core.

Thus, H(YDT|YDKM) = 0 and using mode 8 is not secure.
Problem 6.a. Let the key K and the flag output YD be

known. It’s evident, that in this case the ratio H(M |YDK) =
H(YDT|YDK) is performed.

If the number of performed rounds m is known, then one
may evaluate the input length M and the estimated output
length |YDT| can be evaluated as |YDT| = Kc

m · |M |.
If a round substitution transformation is chosen at random

from the key K, then from the formulae (6.10) and (6.12) we
have

H(M |YD) = H(M) − H(YD) + m · log k − H(K|YDM).

From where, due to (6.12)

H(M |YD) ≥ Kc
m · n · L + m · log k.
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Therefore, the complexity of the problem of plaintext re-
covering satisfies modern requirements if

Kc
m ≥ α − m · log k

|YD| . (6.13)

The requirement (6.13) is always performed from a pseu-

dorandom choice of substitution transformations if m ≥ α

log k
rounds are performed. Especially at α = 80 for a basic im-
plementation of the MV2 cipher the requirement is fulfilled
after 16 transformation rounds irrespective of the length of
an input message.

Note, that if we reject randomization of the MV2 cipher
which occurs at each round due to random choice of a sub-
stitution transformation, then from (6.13) it follows, that

m ≤ log(n · L) − 7

log(1/Kc)
, i.e. the number of possible transforma-

tion rounds depends on the plaintext length. For instance, for
the basic implementation of the cipher, in case of rejecting a
pseudorandom choice of a substitution transformation at each
round, for a 1MB text it’s secure to perform no more than 41
round, and for a 1kB text – no more than 16 rounds, and for
a 16-byte text - no more than one round.

Problem 6.b.
Let the key K and the flag output YD be known. Due to

(3.51) the problems 6.b and 6.a. – are equivalent and should
satisfy the same ratios for the required number of rounds.

Problem 7.a. Let the plaintext M and the flag output
YD be known. From the ratio (6.1) it follows:

H(YDTYDK|M) = [ so H(YDT|YDKM) = 0] =
= H(YDK|M) = H(K).

From where H(K|YDM) = H(K) − H(YD|M).



106 MV2 cryptographic algorithm

At a fixed choice of a round substitution transformation
from the key K entropy H(K) = k · log

(
2n!
)
, and conditional

entropy at performing m rounds doesn’t exceed H(YD|M) ≤
m · log

(∏n−1
i=r 2i!

)
. Therefore

H(K|YDM) ≥ log

(
2n!
)k(∏n−1

i=r 2i!
)m .

If the key is chosen at random at each round, then

H(K|YDM) ≥ k · log
(
2n!
)
+m · log k−m · log

(n−1∏
i=r

2i!
)
. (6.14)

Problem 7.b. Let the plaintext M and the flag output
YD be known.

From the ratio (6.1) it follows:

H(YDT|YDM) = H(K|YDM).

Therefore the problems 7.a and 7.b have the same com-
plexity.

6.6 Some conclusions

From the point 6.4 and 6.5 we can draw the following conclu-
sions

• for security of the general scheme the length of the core
output shouldn’t be too small |YDT| ≥ α;

• a pseudorandom choice of a substitution transformation
from a key increases security of the scheme in case, when
one of the outputs is unknown;

• using the general scheme is not secure, if an adversary
cryptanalyst knows the flag output, the plaintext and
the key.



Chapter 7

Basic implementation of
the MV2 algorithm

7.1 Description

In this application one of the implementations of the gen-
eral scheme of harming (see 4) is described. It is one of the
implementations of the MV2 algorithm (see 4.3)), which we
shall further call as basic.

This implementation has the following design features:

• a key is a short (128÷2048 bits) sequence (master key),
from which 32 tables are generated that set an MV2-
transformation with the parameters r = 3 and n = 7;

• a stream cipher RC4 is used for whitening;

• a 128-bit linear transformer with a high degree of diffu-
sion is used as a permutation transformation.

We shall describe input and output parameters of the basic
implementation.

107
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Encryption

Input: plaintext M (8 × L bits)
secret key K (128, 256, 512,

1024, 2048 bits)
number of rounds: m
or maximal core length: Lc

Output: ciphertext
(
C , F

)
Decryption

Input: ciphertext
(
C , F

)
secret key K (128, 256, 512,

1024, 2048 bits)
Output: error message

or a plaintext M (8 × L bits)

To ensure the ciphertext could be decrypted back to the
message, the encryption transformation has to be invertible,
but it’s not necessarily to use identical algorithms for encryp-
tion and decryption. In MV2, encryption and decryption is
made by different algorithms. As mentioned in 4, a global
structure of the encryption algorithm of the MV2 cipher may
be shown as an SPN (see Fig. 4.1).

The whole encryption process made by cryptographic al-
gorithm MV2 could be divided into some rounds, with inter-
leaving of linear and non-linear transformations. Each round
consists of a linear layer and non-linear layer . Mappings
with images of various lengths are used to implement non-
linear transformations. These mappings are set with secret
tables which constitute key data.

The number of rounds in the basic implementation of the
MV2 algorithm can be set directly or indirectly by setting the
upper bound for the core length. In any case there will be no
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less than 16 transformation rounds performed. Besides, at
a set remainder of the upper margin a number of rounds is
defined automatically at reaching the set core length.

A plaintext is whitened by the stream encryption cipher
RC4 before performing main rounds. One of the permuta-
tions is used as an RC4 key. This permutation sets an MV2-
transformation and is generated from the key.

A round of the basic implementation
Each round consists of two transformations: a substitu-

tion transformation and a permutation transformation. The
permutation transformation is made locally. The processed
message is divided into 128-bit blocks, each subjected to the
same transformation, which rearranges its bits. If the text
length is not multiple 128, the last incomplete block is not
processed. The permutation transformation is followed by
the substitution one set by the selected table for this round.

The permutation transformation is the linear ensuring
high degree of local diffusion and it is similar to that one de-
scribed in [3]. This transformation permutes 128 bits recorded
in four 32-digit words ”abcd” in the following way:

a = a ≪ 13
c = c ≪ 3
d = d

⊕
c
⊕

(a � 3)
b = b

⊕
a
⊕

c
d = d ≪ 7
b = b ≪ 1
a = a

⊕
b
⊕

d
c = c

⊕
d
⊕

(b � 7)
a = a ≪ 5
c = c ≪ 22
where ≪ denotes rotation, � denotes shift, and

⊕
is

EXCLUSIVE OR.
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At each round the byte Substitution transformation is per-
formed by applying one of 32 key substitution transformations
to each byte of the text. The transformation is selected using
values of R from the GPS.

A substitution transformation is an MV2-transformation
(see 3.2).

This transformation maps a n-bit string x into a pair (c, f),
consisting of two variable length strings. In the basic realiza-
tion n = 8 and r = 3, therefore such transformations are
called byte substitution transformations. Each byte of the in-
put text is mapped into a pair of bit strings, the first one
(remainder) is 3 to 7 bits long, the second one is a value code
in the range from 1 to 6. This transformation can be set by
the table, where a permutation x0, . . . x255 of values 0 to 255 is
in the left part and images, consisting of the ”remainder” and
”flag” parts, are stored in the right part (see Table 7.1 and
3.2). The substitution transformation is described in section
3.1.2.

Key
The key is an arbitrary binary string which can have a

length of 128, 256, 512, 1024 or 2048 bits. In the algorithm
a special key transformation is used, which maps a received
key into a set of substitution tables. A set of transformations
is set by a string having the following format: the first 256
bytes contain permutation of all the numbers from 0 to 255
that set a MV2-mapping, and 4 standby bytes. At using,
the permutation is displayed into a table which sets an MV2-
transformation, as shown in the table 7.1.

The algorithm of substitution transformation generation
is resistant to a linear and differential cryptanalysis.

In the basic realization of the algorithm the number of
substitution tables in the key is limited to 32 (in this case to
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Table 7.1: Task of a substitution transformation

Symbol Image length Remainder Flag
s1 3 000 00001
s2 3 001 00001
. . . . . . . . . . . .
s8 3 111 00001
s9 4 0000 0001
. . . . . . . . . . . .
s24 4 1111 0001
s25 5 00000 001
. . . . . . . . . . . .
s56 5 11111 001
s57 6 000000 01
. . . . . . . . . . . .
s120 6 111111 01
s121 7 000000 1
. . . . . . . . . . . .
s248 7 1111111 1
s249 3 000 00000
. . . . . . . . . . . .
s256 3 111 00000

give a transformation number 5 binary bits are required). In
versions for specific applications this number of tables may be
increased.

Random number generator
The basic implementation of the algorithm is an iterative

probabilistic cipher.
The generator is used to randomize the cipher, i.e. a ran-

dom number of a table is generated and used at each current
encryption round. In the basic version we use a random num-
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ber generator (RNG) built on the basis of the affine transfor-
mation:

xt+1 = 213(xt + xt−1 + xt−2) mod(232 − 5).

The initial state of the RNG is reset by the timer during
initialization the device.

The nature of the generator is of no importance for the
cipher, therefore any, also a physical, RNG may be used.

Presentation of output data

Algorithm’s output

Output data consist of two binary sequences we call a core
and string of flags. The core is a remainder obtained at the
last round. A String of flags is a concatenation of output
flags obtained at all transformation rounds. For convenience
of decryption, the flags round outputs are put in a reverse
order (the last flag round output, the one before, ..., the first
flag round output) without separators.

Output of each round

As substitution transformations have bit outputs, while
the main data storage unit in modern computer systems is
byte, in the general case, the algorithm’s outputs have to be
complemented to a byte value. At the same time we have to
know the true length in bits for decryption. Therefore, 1 byte
of service data is fore-added to the obtained remainder, this
byte comprises the table number (5 bits) and the number of
real bits in the last byte (3 bits).

For such a presentation, strings of flags practically have
no redundancy.
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7.2 Key schedule of the cipher MV2

Our strategy in selecting S-boxes is to choose them com-
pletely at random. While this approach can be insecure for
small S-boxes (for instance, Biham and Shamir noticed [5]
that replacing S-boxes of DES by random S-boxes yielded ci-
phers that were far weaker towards differential cryptanalysis
than the original algorithm), theoretical works by O’Connor
[44]-[47] and later by Youssef and Tavares [54]-[56] have shown
that large random S-boxes are in average very resistant to lin-
ear and differential cryptanalysis. A way to choose random
S-boxes is to make them key-dependent. As example, this
approach has been used in the algorithms IDEA, RC5, RC6,
Blowfish or Twofish.

7.2.1 Notations

The following is a list of notations and glossary terms:

• word : a 32 bit quantity.

• master key : the user defined key, or initial secret key.

• N : a bit length of a master key.

• x ≪ n : denote a cyclic left shift or cyclic rotation of a
word x by n bits to the left.

In the calculation, g represents a bit-wise operation de-
fined by

g(x2, x1, x0) = x2x1 ⊕ x1x0 ⊕ x0x2, (7.1)

where each xi is a word, xixj represents the bit-wise AND,
while A ⊕ B the bit-wise XOR of the two data involved.
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There are many different criteria which can be applied to
key schedule analysis, including : weak keys, semi-weak keys,
complementation properties, reconstruction of master key or
other subkeys from recovered subkey bits, dependence of sub-
keys on the (full/partial) master keys material (key diffusion).
These aspects will be taken into account in the design and
analysis the key schedule algorithm of MV2.

Design principle and criteria:

• maximize avalanche in the subkeys,

• reconstruction of master key or other subkeys from re-
covered subkey bits,

• dependence of subkeys on the (full/partial) master keys
material (key diffusion).

The key schedule MV2 is defined for master keys of length
N = 128, N = 256, N = 512, N = 1024 and N = 2048 bits.

7.2.2 Properties of Random S-boxes

Since the object of this proposal is a new cipher using key-
dependent S-boxes, it will be useful to investigate the average
properties of random invertible n×n S-boxes. A series of com-
binatorial results have demonstrated that a randomly chosen
s-box of sufficient size will possess several of these desirable
properties with high probability.

Completeness

O’Connor proved in [46] that a randomly chosen n × n
invertible S-box has a high probability of being complete for
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sufficiently large n. In fact, he showed that the probability
that such an S-box is not complete is

o

( √
2n

22n−1+n+1

)
.

For an exact formula, see [44].

Avalanche and Strict Avalanche

The authors have not found any results giving the proba-
bility that a random invertible n× n S-box satisfies AVAL or
SAC (although there are bounds on the probability that a ran-
dom function f : {0, 1}t → {0, 1} satisfies SAC). On the other
hand, a number of theoretical and experimental results exist
concerning the AVAL property for SPNs. Heys and Tavares
developed a probabilistic model for the AVAL property of an
SPN [21]. Their results for N = 64 and n = M = 8, using
randomly selected S-boxes and the fixed permutation of Kam
and Davida [23], indicate that AVAL is reasonably satisfied
after 5 or more rounds. In fact, if ER is the expected number
of output bit changes after R rounds when one input bit is
flipped, and we define ε = |1 − ER/(N/2)|, then ε ≤ 10−5 for
R ≥ 7.

Nonlinearity

For an invertible n × n S-box S and an integer 2L(0 ≤
L ≤ 2n−2), Youssef and Tavares [56] prove that

prob[nl(S) ≤ (2n−1 − 2L)] <

<
2(2n−1!)2(2n − 1)2

2n!

2n−2∑
i=L

(
2n−1

2n−2 + i

)2

.
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If n = 8, we have, for example, prob[nl(S) ≤ 64] < 1.4 ·
10−11 and prob[nl(S) ≤ 80] < 4.6·10−5. Experimental results
support the theoretical result of (3). For example, Heys [20]
generated 200 random invertible n×n S-boxes and found that
each satisfied 86 ≤ nl(S) ≤ 98.

XOR Table Distribution

If S is a randomly chosen invertible n × n S-box, and
0 ≤ A ≤ 2n is an even integer, a formula of Youssef and
Tavares gives the probability that the maximum XOR table
entry of S (denoted maxXOR(S)) is ≥ A [56]. For example,
if n = 8 and A = 16, we have

prob[maxXOR(S) ≥ 16] ≤ 0.0042.

Cyclic Properties

There is some indication that the cyclic properties (cycle
length, number of cycles) of an S-box are related to other
cryptographic properties. Youssef et al. give experimental
results which show that, on average, S-boxes with fewer fixed
points have higher nonlinearity and lower maximum XOR ta-
ble entries [57]. They prove that the expected number of fixed
points for a random invertible S-box is 1, with a variance of
1. They also state that the expected value and variance of
the number of cycles is approximately ln 2n ≈ 0.69n; and that
the expected cycle length is 2n−1 + 1/2, where the expected
cycle length is defined as the value of the length of the cycle
to which a randomly chosen element belongs.
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7.2.3 Random S-Box Generation Process

The fact that the S-boxes are unknown to the cryptanalyst
is one of the principal strengths of our system, since both
linear and differential cryptanalysis require known S-boxes.
It is not apparent that the pseudo-random nature of the S-
boxes introduces any exploitable weakness into the system.
The results about properties of random S-boxes indicate that
if the S-boxes are generated from the key in a sufficiently
random fashion, each S-box has a high probability of being
complete, possessing fairly high nonlinearity, and having its
largest XOR table entry < 16.

The key, K, is used to generate a series of subkeys
KX1, KX2, . . . , KXMR, by application of a key expansion
function f. A second function g generates the i-th S-box, Si,
from some subset of subkeys KXi. The functions f and g must
meet certain requirements. First of all, they must produce S-
boxes which are satisfactorily random, in order to achieve the
results of Section 5.2. Secondly, even though the S-boxes are
in principle secret, we want the generation process to be such
that if a cryptanalyst determines one of the S-boxes, this does
not yield any information about any other S-box. There are
a number of ways to achieve this security. One approach is
to make f cryptographically secure; g can then be any sim-
ple function which generates pseudo-random S-boxes from the
KXi. Another method is to make g one-way, for example a
secure hash function, or a many-to-one function. Then it is
only required that f be sufficiently random.

Our algorithm chooses an S-box uniformly from the set of
all invertible 8× 8 S-boxes. It is based on the design concept
of ”mixing operations from different algebraic groups”.

We are also considering a number of other options for f
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and g. As this work progresses, test results for these different
methods will enable us to determine the approach which yields
the most secure SPN. Note that we plan to keep the S-box
generation process separate from the SPN itself. Two other
cryptosystems Khufu and Blowfish also use key-dependent S-
boxes, but each incorporates the cryptosystem itself in some
initial state to pseudo-randomly generate the S-boxes used
for actual encryption and decryption. By avoiding this self-
referential approach, we hope that the analysis of our system
will be simplified.

Key Expansion Functions

Each algorithm key schedule has a KX (key expansion)
table cosisting of 256 words of 32 bits, pseudo-randomly gen-
erated from the master key. Algorithms for creating the tables
are different for each key schedule. The table may be comput-
ed when a master key is setup. The algorithms use a masked
table T cosisting of 8 pseudo-random words of 32 bits. Ele-
ments of a master key and elements of table T are input for
nonlinear transformations.

The purpose of the key expansion function is to pseudo-
randomize the KX array, allowing each input bit to influence
every other bit.

Criteria for sequence of words kx[0], kx[1], . . . , kx[255] :

• Bits of each word should be equiprobable and statisti-
cally independent from each other;

• Bits of each word should be statistically independent
from bits of several next words;

• The number of possible target sequences should not be
essentially less than the number of possible master keys.
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S-Box Generation Function

The code, for creating S-boxes from an array KX, is the
same for each algorithm key schedule. The function, creating
S-boxes, has 8 internal state variables, each an unsigned 32-bit
word. They are denoted s0, . . . , s7. Before the first pass over
the KX array, they are initialized with key-dependent values,
which are computed by the key expansion function. All S-
boxes consist of a permutation of the numbers from 0 to 255.
We compute 255 · 32 pseudo-random numbers in the variable
x. The mixture of different operations is used for computing
a pseudo-random number x.

7.3 Statistical estimations

of output data and resistance

Evaluation of output lengths
As it was mentioned it’s important to know lengths of

output data for practical implementation.
Let M be a plaintext of the length L(M) bytes, and (C, F )

be a ciphertext after m rounds of transformations.
In the basic realization of the MV2 algorithm one service

byte is added to each result of a round substitution transfor-
mation. If E(Lm(C)) is the expectation of the length of the
core and E(Lm(F )) is the expectation of the length of the
string of flags then

E
(
Lm(C)

)
≈ Kc

m ·
(
L(M) + 1

)
+

159

128
· 1 − Kc

m+1

Kf
, (7.2)

E
(
Lm(F )

)
≈ (1 − Kc

m+1) · (L(M) + 1)+

+
225

128
· m − 1 − 1 − Kc

m+1

Kf
,

(7.3)
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where Kc =
97

128
= 0.7578125 and Kf =

31

128
= 0.2421875 (see

expressions (3.41) and (3.42) from the section 4.1).
If the core length shouldn’t exceed some length Lc, then

m ≈ 1 +
log Lc − log L(M)

log Kc
(7.4)

and the total length of the flags

E(Lm(F )) ≈ L(M) − Lc + 2 · log Lc − log L(M)

log Kc

. (7.5)

The total output length:

E(L(C) + L(F )) ≈ L(M) + 2 · log Lc − log L(M)

log Kc
. (7.6)

For random L-bytes input text for one round of transfor-
mation from the statement 3.3 follows that a number of bytes
in the output of the remainder will be restricted to:

(Kc − σc/8) · L ≤ |C|/8 ≤ (Kc + σc/8) · L,

and a number of bytes in the output flags will be restricted
to:

(Kf − σf/8) · L ≤ |F |/8 ≤ (Kf + σf/n) · L,

with the probability no less than 1−L−2. In these inequalities
σc and σf are standard deviations of the output text length
from average values. For a uniformly distributed input text
σc ≈ 1, 2 and σf ≈ 4, 2.

Note that the value of a standard deviation of the remain-
der output length is not large and is about 1 bit per plaintext
symbol. At the same time the value of a standard deviation
of the flag output length is more than 1/2 byte per 1 byte of
a plaintext. On the other hand at each round the flag out-
put length is defined by the length of a remainder obtained
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at a previous round, therefore with the probability 1 − L−2

after executing the m-th round the remainder length L
(m)
C (in

bytes) won’t exceed the value

L(m)
c ≤ (Kc + σc/8)m · L + 10,

and the flag output length L
(m)
F (in bytes) won’t exceed the

value
L

(m)
F ≤ 3

4
(Kc + σc/8)m · L + 10.

About resistance
Note that a simple attack meet-in-the-middle cannot be

implemented for MV2. We did not find a better attack on
MV2 with 16 rounds other than a brute force attack. There
are probably faster attacks, but they should require an unreal
amount of selected open texts and memory volume.

Unlike other cryptographic transformations, in our case
we may consider not only variants of unknown keys, but other
variants as well – an unknown core or an unknown string of
flags at known or unknown keys.

Here the plaintext M shall be considered as a uniform se-
quence of symbols x ∈ {0, 1}n. Such consideration is justified
as, from one side, in the basic realization before implemen-
tation of main rounds, the plaintext is being processed by a
stream cipher (noise), from the other side, as the result of a
certain number of rounds, a randomized text goes to the input
of a byte substitution transformation.

Note that for the MV2 cipher the complexity of attacks
grows together with the length of the plaintext.

Evaluation of number of texts having a set remainder
and unknown flags

If only a core is known, then it is not possible to recover
the plaintext even if the keys are available.
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As a round permutation is fixed, a set of texts having the
same remainder is determined by the substitution transfort-

mation T =
(
c, f
)

∈ F3
8. If Lc is a number of bytes in the

output of the core and m is a number of performed rounds,
then NC is a number of possible plaintexts corresponding to
the given core will be no less than see the formula (4.4):

NC ≥ 2(128
31 ( 128

97 )
m− 1

31)·Lc

For example, if the known core has the length of 1032 bits
(128 bytes + 1 byte of service information), n = 8, r = 3 and
m = 10 rounds was executed, then no less than 267657 variants
of a plaintext (if the key is known) is possible.

Evaluations of number of texts having required flags
and an unknown remainder

If the core is unknown, the plaintext’s length and, possi-
bly, the number of rounds is unknown as well, this sharply
decreases probability to select the plaintext.

Assume in the result of encryption of the plaintext M by
the MV2 cipher with the key K, we obtained a cryptotext
(C, F ) = MV 2(K, M). As the cipher MV2 is a pseudorandom
function, the task of finding M using known K and F is 2H(C)

hard. Note that in the real applications where file sizes are
bigger than 1024 bytes, after encryption we get |C| > 128
bits. Hence, H(C) > 128, therefore complexity of finding X
by the known K and F corresponds to modern requirements.

If the number of rounds m is known, then number NF of
plintexts which have the string of flags F, is

NF ≈ 2
Kc

m

1−Kcm+1 ·|F |
,

where |F | is a length of the string of flags (bits) and Kc = 97
128

.
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About inherited properties of the plaintext

If a cryptoanalyst has no a single pair ”message-cryptogram”,
the only thing he might use, would be analysis of properties
of the open text that are being inherited by cryptograms. I.e.,
the real plaintext is replaced by its model, reflecting its most
important properties. Then the cryptoanalysis may be built,
for example, on the statistical solutions theory. During such
an approach, the most important features of the plaintext
model are its frequency characteristics. It’s practically not
possible to reveal a correlation between frequency character-
istics of the chosen plaintext model and those ones of flags
due to the following:

There are 6 different digits in the alphabet of flags. For
each key mapping T = (c, f) ∈ F3

8, there are 8 images with
flags 5 and 6, and 28−j images with the flag j, 1 ≤ j ≤ 4.
Therefore, if the language model have n symbols, then for the
random mapping T , expectations of the numbers tj symbols
having an image with the flag j are E(t1) = n/2, E(t2) = n/4,
E(t3) = n/8, E(t4) = n/16, E(t5) = n/32, E(t6) = n/32. I.e.,
practically all the symbols cannot be identified using the first
flag output. So the frequency characteristics of the first flag
output does not correlate with the frequency characteristics
of the model language.

Evaluations of the number of texts at an unknown key

If an unknown transformation T = (c, f) ∈ F3
8 is applied

to the plaintext M = x1‖ . . .‖xL of the length L and we have
available the core — c(M) = c(m1)‖c(m2) . . .‖c(mL) and the
string of flags — f(M) = f(m1)‖f(m2) . . .‖f(mL).

If the plaintext M is unknown and L is big enough (L >
29 = 512), then there are 2n! possible transformations T and,
correspondingly, 28! ≈ 21684 possible variants of the plaintext.
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In the case of the uniformly distributed input at each
transformation round, there are

∏n−1
i=r 2i! different output

texts ci(Mi−1). At n = 8 and r = 3 this makes about 2491.
Accordingly, there are about 21193 images ci(Mi−1)

Security of the cascade

Security of a cascade cipher is characterized by the follow-
ing theorem ( [33]):

T h e o r e m 7.1 A cascade cipher has at least the same
security as the first cipher in the cascade.

A basic implementation of the MV2 algorithms is a cas-
cade of ciphers. In such system, as in any other, the plaintext
M and the secret key K are random values. Statistics of M
depends on the nature of the source of plaintexts, while the
statistics of K is controlled by the cryptographer. In usual
ciphers the encryption process is deterministic, i.e., the cryp-
totext Y is uniquely determined by the plaintext M and the
key K.

A cipher has property of non-expanding if there is an as-
cending sequence of positive integer n1, n2, . . . , such, that the
first ni digits Y1, Y2, ...Yni

of the cryptotext together with the
secret key uniquely determine the first ni digits X1, X2, ...Xni

of the open text for i = 1, 2, . . . . Ciphers with the property
of non-expanding are called non-expanding. A single-round
MV2 cipher is a non-expanding cipher, we may simply as-

sume ni =
i∑

j=1

fi, where f1, f2, ... are flags, and Y1, Y2, ...Yni

are substrings of the remainder, such, that |Yi| = fi. The
following fact is well known (see. [30]).

Property ”random input – random output” for non-expand-
ing ciphers : For each selection of k of the secret key K, the
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cascade consisting of binary-symmetric source (BSS) and a
non-expanding cipher creates a BSS as well. Moreover, for
any probabilistic key distribution, this cascade shall generate
a cryptotext sequence Y1, Y2, ... which is statistically indepen-
dent from the secret key K.

As defined by Shanon, a cipher is perfectly secure If
the key K is statistically independent from the cryptotext
sequence Y1, Y2, .... At any attacks using a known cipher-
text against a perfectly secure cipher, the attacker cannot
obtain any information on the secret key K, irrespective on
the amount of ciphertexts he’s being checking on. I.e., the
cipher’s security is not diminishing at increase of the total
size of the encrypted plaintext prior to the secret key change.
It follows from the feature ”random input - random output”
that each non-expanding cipher becomes perfectly secure if
BSS is the source of plaintexts. This means, for such sources
MV2 is a perfectly secure cipher.

7.4 Testing of the algorithm

Testing on correspondence

to dependence criteria

For testing a basic implementation of the MV2 algorithm
on correspondence to dependence criteria the formulae (5.10),
(5.11) and (5.12) were used, and also (5.13) and (5.14).

The crytpographic primitive MV2 doesn’t belong to nei-
ther block class ciphers. It is an iterative probabilistic ci-
pher, where each iteration resembles a round of a substitution-
permutation network when not a single block as in block ci-
phers, but rather the whole message is being processed.
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The lengths of outputs of MV2 are dependent on a plintext
M, a key K and a randomizer R. In this case the normalizing
coefficient is not completely correct into expressions (5.11),
(5.12), (5.13) and (5.14). This normalization understates val-
ues of the degree of avalanche effect and the degree of strict
avalanche criterion. But this criteria can be used for the test-
ing of MV2.

The method of testing on corresponding

to dependence criteria

We test MV2 with four variants of size of an input block.
We consider the plaintext sizes of 16, 32, 64 and 128 bytes.
For each variant, we consider 5000 randomly chosen inputs
encrypted under a single randomly chosen MV2 key. These
examinations is carried out for varying numbers of rounds,
from 1 round to the 16-th rounds. Initial data were taken from
a file containing a sequence generated by a physical random
number generator.

We’ve determined the maximum length of outputs, aver-
age length of the core (L∗

c) and string of flags (L∗
f ), the average

number of output bits changed when changing 1 input bit, and
separately for the core and the string of flags, the degree of
completeness, the degree of avalanche effect (dc

a and df
a) and

the degree of the strict avalanche criterion (dc
sa and df

sa) were
computed.

The degree of completeness, except for one special modi-
fication of MV2 has always been ≈ 1.0

The algorithm’s output is the core and the string of flags.
The lengths of the core and the string of flags are changed on
every round. The following expressions were used as the de-
gree of avalanche effect and the degree of the strict avalanche
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criterion:

da =
dc

a · L∗
c + df

a · L∗
f

L∗
c + L∗

f

,

dsa =
dc

sa · L∗
c + df

sa · L∗
f

L∗
c + L∗

f

.

Dependence of da and dsa on size of input data

A substitution transformation (see section 3.2) for each
entry byte assigns a reminder, which has the length from 3 to
7 bits. If a plaintext is short, only some part of a substitu-
tion table is used for the text transformation on every round;
besides, the 128-bit fixed permutation is used, which doesn’t
work for texts less than 16 bytes long, therefore,we may as-
sume that values da and dsa must depend on the size of entry
data.

Fig. 7.1 and 7.2 show values of da and dsa at different input
lengths. It’s obvious that with the growth of input lengths,
the values of da and dsa are growing as well for all rounds.

On the choice of a permutation transformation

There are some mechanisms for providing diffusion in the
round function. In the basic realization of the MV2 algorithm
a 128-bit linear transformer is used to ensure dispersion. Fur-
ther we’ll call it as basic one.

To determine the influence of a permutation transforma-
tion, we made changes to the source code of the algorithm and
computed values da and dsa for different permutation trans-
formations. We’ve considered the following variants:

1) with a basic permutation transformation;
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Figure 7.1: Comparison of criteria da for 128, 64, 32 and 16 -byte
inputs
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Figure 7.2: Comparison of criteria dsa(strict avalanche effect) for 128,
64, 32 and 16 -byte inputs
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2) with the affine byte permutation transformation;

3) with ”armenian” shuffle [31].

4) without a permutation transformation;

0,955

0,96

0,965

0,97

0,975

0,98

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 2 3 4

Figure 7.3: Comparison of criteria of avalanche effect da for 128-bit
random inputs at different permutations . 1 – ”armenian”, 2 – basic, 3
– affine permutation, 4 – without a permutation transformation;

As the charts in Fig. 7.3 and 7.4 show, different permuta-
tions practically have no influence on the values da and dsa.

We conclude that this effect is a corollary of the pseudo-
random change of substitution transformations at each round.
To check the hypothesis, the random number generator has
been turned off in the algorithm’s source code and a fixed se-
quence of numbers has been used for selection of the round
substitution transformation. Thus, during all tests the same
substitution transformations were made for the same rounds.
For these conditions, degrees of avalanche, completeness and
strict avalanche for 128-byte inputs were computed..
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Figure 7.4: Comparison of criteria of s strict avalanche effect dsa for
128-bit random inputs at different permutations. 1 – ”armenian”, 2 –
basic, 3 – affine permutation, 4 – without a permutation transformation;

At these conditions degrees of completeness, avalanche and
strict avalanche were computed for 128-bit inputs. The tests
results are displayed in the charts in the Fig. 7.5 and 7.6. Up-
per charts (MV2) in Fig. 7.5, 7.6 and 7.7, 7.8 correspond to
a usual (pseudorandom) table shuffle without a linear trans-
formation before the substitution.

We can see from these charts, that a pseudorandom choice
of substitution transformation at each round has greater in-
fluence on the values da and dsa, than a permutation trans-
formation.

As the difference between the values da and dsa till the 4th
round and after it is not very big (Fig. 7.5, 7.6), in Fig. 7.7
and 7.8 the values da and dsa,were concluded beginning with
the 4th round.
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Figure 7.5: Comparison of the criteria da for different permutations at
the fixed substitution transformations
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Figure 7.6: Comparison of the criteria dsa for different permutations
at the fixed substitution transformations
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Figure 7.7: Comparison of the criteria da for different permutation
transformations at the fixed substitutions beginning with the 4th round

One can see from the charts in Fig. 7.7 and 7.8, that the
basic permutation has a better influence on the values da and
dsa.

The results of testing (Fig. 7.3 – 7.8) allow drawing conclu-
sions about the following: firstly, a pseudorandom change of
permutation transformation has bigger influence on values of
dependence criteria, than that one of a linear transformation,
and, secondly, a chosen in the basic realization permutation
transformation is better than others considered ones.

Influence of whitening

The MV2 encryption algorithm is a cascade of a stream
cipher and the general scheme of harming. Application of a
stream cipher ensures whitening of a plaintext.

To check its impact on the degree of completeness, degrees
da and dsa we carry out tests for MV2 with whitening and
MV2 without whitening (Fig. 7.9, 7.10). The first test con-
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Figure 7.8: Comparison of the criteria dsa for different permutation
transformations at the fixed substitutions beginning with the 4th round

sist of 5000 randomly selected 16- and 128-byte bytes plain-
texts. The second test consists of 256 128-byte homogeneous
plaintexts M = x128 where x ∈ {0, 1}8. Under a homogeneous
input here we understand a sequence consisting of the same
bytes. The following designations are used in these charts: 1a,
2a and 1b, 2b – correspondingly 16- (1), 128-byte (2) random
inputs at presence (a) or absence (b) of whitening, 3a, 4a and
3b, 4b – correspondingly 16- (3), 128-byte (4) homogeneous
inputs at presence (a) or absence (b) of whitening.

It follows from the charted displayed in Fig. 7.9 and Fig.
7.10, that whitening has a significant impact on values of de-
grees of avalanche criteria and a strict avalanche criteria in
case of homogeneous inputs. This impact grows at increase
of the input length.

In our attacks on MV2 we discovered that whitening sub-
stantially increased the difficulty of attacking the cipher, by
hiding from a attacker the specific inputs to the first round.
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Figure 7.9: Dependence daon presence of whitening and type of input
data at 16- and 128-byte inputs:
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Figure 7.10: Dependence dsa on presence of whitening and type of
input data at 16- and 128 byte inputs
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Whitening and the flag output

We also carried out testing to evaluate impact of whitening
on the flag output. As the mappings satisfying SAC, satisfy
other criteria as well, then the flag output was tested for cor-
respondence on a strict avalanche criterion. The degree of a
strict avalanche criteria was defined by the formula (5.14). At
computing according to this formula it’s possible to estimate
an error occurred due to a variable input length.

The charts of degree of a SAC of the flag output on the
number of rounds for different input lengths and tests are
showed in Fig. 7.11.
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Figure 7.11: Charts of dependence degree of a SAC of the flag output
on the number of rounds for different output lengths: 1 – homogeneous
inputs without whitening; 2 – homogeneous inputs with whitening; 3 –
random inputs without whitening; A – 16, B – 32, C – 64, D – 128, E –
256-byte inputs

Sequences consisting of 16, 32, 64, 128 and 256 bytes went
to the input. For each input length three groups of tests
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of computing the degree of a strict avalanche criterion were
carried out:

1. A test for homogeneous inputs without whitening (Fig.
7.11, charts 1A – 1E);

2. A test for homogeneous inputs with whitening (Fig.
7.11, charts 2A – 2E);

3. A test for random inputs without whitening (Fig. 7.11,
charts 3A – 3E).

From the comparison of charted displayed in Fig. 7.11, we
can draw conclusions about the following:

• values of the SAC degree grow at increasing an input
length;

• at increasing a number of rounds values of a SAC degree
start decreasing for short inputs (16, 32, 64 byte).

Usually, the MV2 algorithm is used to encrypt data of
large capacity, therefore the most interesting case is to con-
sider values of SAC degrees for 256-byte inputs. The corre-
sponding charts are represented in Fig. 7.12.

We can see from the charts displayed in Fig. 7.12, that:

• values of a SAC degree at homogeneous inputs and
whitening behave in the same way as at a random input
without whitening;

• at first rounds if there’s no whitening, the values of a
SAC degree are considerably smaller than in the case
with whitening.
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Figure 7.12: Charts of dependence of a SAC degree of the flag output
on a number of flags for 256-byte inputs: 1 – homogeneous inputs without
whitening; 2 – homogeneous inputs with whitening; 3 – random inputs
without whitening

From the charts (Fig. 7.11 and 7.12 ) we can see that
whitening has a considerable impact on values of degree of an
avalanche and a strict avalanche of the flag output in case of
homogeneous outputs. Whitening considerably increases the
difficulty of attacking by known flags by concealing from an
attacker the specific inputs to the first round.

For 256-byte inputs degrees of a SAC of various texts be-
gan to coincide after 7 transformation rounds. Consequently,
we can draw a conclusion that for long input texts it’s rec-
ommended to perform no less than 7 encryption rounds. For
short input texts (less than 128 byte), on the contrary, it’s
not recommended to perform more than 10 encryption rounds.
Consequently implementation of the algorithm should be built
in such a way that wouldn’t allow short (less that 16 bytes) re-
mainder outputs, at that no less that 8 transformation rounds
should be performed.
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The length of the flag output
In the table. 7.2 there are average values of flags output

lengths. The values at which the average output length is
bigger than an input length are in bold type. The correlation
of the table with the charts in Fig. 7.12 allows drawing the
conclusion that the optimal number of rounds depends on a
length of an input text.

Table 7.2: Tentative and calculated (in the parenthesis) average lengths
of the flag output (in bytes) at different input lengths for varying number
of rounds

16 32 64 128 256
1 5,0(6,2) 8,9(13,0) 16,6(26,7) 32,1(53,9) 63,0(108,4)
2 8,9(9,8) 15,7(18,8) 29,3(36,9) 56,5 (73,0) 110,9(145,3)
3 12,3(12,9) 21,3(23,6) 39,4(45,1) 75,4 (88,0) 147,6(173,7)
4 15,3(15,7) 26,0(27,7) 47,4(51,7) 90,2 (99,7) 175,9(195,7)
5 18,1(18,2) 30,1(31,2) 54,0(57,1) 101,9(109,0) 197,7(212,8)
6 20,6(20,6) 33,57(34,3) 59,4(61,7) 111,2(116,5) 214,8(226,1)
7 23,0(22,8) 36,7(37,0) 64,0(65,6) 118,7(122,6) 228,1(236,7)
8 25,2(24,9) 39,5(39,6) 67,9(68,9) 124,9(127,6) 238,7(245,1)
9 27,4(26,9) 42,1(41,9) 71,4(71,9) 130,0(131,9) 247,2(251,9)
10 29,5(28,8) 44,5(44,1) 74,4(74,6) 134,3(135,5) 254,1(257,5)
11 31,6(30,7) 46,8(46,2) 77,18(77,0) 138,0(138,7) 259,7(262,1)
12 33,6(32,6) 48,9(48, 2) 79,7(79, 3) 141,3(141,6) 264,5(266,1)
13 35,6(34,5) 51,1(50,1) 82,1(81,5) 144,3(144,2) 268,5(269,5)
14 37,5(36,3) 53,1(52,0) 84,4(83,5) 146,9(146,5) 272,0(272,5)
15 39,5(38,1) 55,1(53,9) 86,5(85,5) 149,4(148,8) 275,2(275,2)
16 41,4(39,9) 57,1(55,7) 88,7(87,5) 151,7(150,9) 278,0(277,7)

The criterion of completeness

The dependencies tests show that MV2 satisfy to the com-
pleteness criterion.

During examinations tests in which at each round a cer-
tain substitution transformation was performed were carried
out. In these tests we found the index of dependence of the
degree of completeness on a number of performed rounds. In
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Figure 7.13: Comparison of degree of completeness for different linear
transformations at the fixed set of substitution transformations and 128-
byte random inputs

Fig. 7.13 there are charts of values of the index of the de-
gree of completeness at the fixed at each round number of
substitution transformation for various types of permutation
transformation. We can see from this chart that at the fixed
extract of substitution transformation the criterion of com-
pleteness is carried out beginning with the 3d round.

Analysis of cores’ output

The core is a harmed ciphertext.

In the table. 7.3 and 7.4 there are experimental data ob-
tained during testing the core output on accordance to depen-
dence criteria. In these tables the following designations are
used: Rnd is a number of a round, LC is the maximal length
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of the core output (in bits), L̃C is the average length of the
core output (in bits), Δ – the average number of changed bits,
dc is degrees of completeness, da and dsa – correspondingly de-
grees of avalanche and strict avalanche, computed by (5.11)

and (5.12), d̃sa is the degree of a strict avalanche, calculated
by (5.12), σ is an experimental value of a standard deviation
of the core length from the average value and σ/m – evalua-
tion of the error of the degree of a strict avalanche calculated
by (5.14).

Evaluations of errors
Normalization factor in the expressions (5.11), (5.13) and

(5.12),(5.14) is not used entirely correctly. Let’s evaluate an
error occurred due to incorrect evaluation of ”tails” in (5.14).
Denote μ the average output length. Then from (5.14) we
have

d̃sa = 1 − 1

mn

n∑
i=1

μ∑
j=1

∣∣∣∣2aij

#X
− 1

∣∣∣∣− 1

mn

n∑
i=1

mi∑
j=μ+1

∣∣∣∣2aij

#X
− 1

∣∣∣∣
(7.7)

For the component

dsa = 1 − 1

mn

n∑
i=1

μ∑
j=1

∣∣∣∣2aij

|X| − 1

∣∣∣∣
the value aij can be considered correct, and the second one in
(7.7) is computed with an error.

Then the real value

d∗
sa = dsa + δ,

where δ – is an added error.
Let’s consider a random value τ, which equals the output

length. Let μ be an expectation and σ will be a variance of



Chapter 7. Basic implementation 141

Table 7.3: Results of testing dependence criteria for 16-byte inputs

Rnd LC L̃C Δ dc da dsa d̃sa σ σ/m
1 127 109,9 60,83 1 0,96 0,88 0,95 7,68 0,07
2 119 93,65 53,48 1 0,94 0,86 0,94 8,08 0,09
3 111 81,30 47,55 1 0,92 0,83 0,94 8,11 0,1
4 103 71,94 43,03 1 0,91 0,81 0,93 7,93 0,11
5 95 65 39,20 1 0,9 0,8 0,93 7,74 0,12
6 90 59,61 36,67 1 0,9 0,8 0,92 7,52 0,13
7 85 55,59 34,48 1 0,88 0,78 0,92 7,37 0,13
8 79 52,49 32,72 1 0,89 0,78 0,92 7,16 0,14
9 79 50,27 31,57 1 0,89 0,78 0,92 7,0 0,14
10 75 48,41 30,33 1 0,88 0,77 0,92 6,81 0,14
11 73 47,13 29,73 1 0,89 0,78 0,91 6,7 0,14
12 71 45,92 28,99 1 0,9 0,8 0,92 6,56 0,14
13 71 45,17 28,45 1 0,9 0,79 0,91 6,45 0,14
14 70 44,61 28,15 1 0,89 0,78 0,91 6,39 0,14
15 64 44,16 27,77 1 0,89 0,76 0,91 6,3 0,14
16 63 43,75 27,64 1 0,89 0,75 0,91 6,29 0,14

Table 7.4: Results of testing dependence criteria for 64-byte inputs

Rnd LC L̃C Δ dc da dsa d̃sa σ σ/m
1 447 400,3 209,2 1 0,97 0,93 0,97 20,6 0,05
2 366 313,8 167,2 1 0,95 0,9 0,96 18,4 0,06
3 303 248,0 134,7 1 0,94 0,89 0,96 16,3 0,07
4 249 198,5 109,7 1 0,93 0,87 0,95 14,7 0,07
5 207 160,8 90,33 1 0,92 0,85 0,95 13,3 0,08
6 178 132,1 75,58 1 0,91 0,84 0,94 11,9 0,09
7 157 110,7 64,2 1 0,9 0,83 0,94 10,9 0,1
8 134 94,06 55,62 1 0,9 0,82 0,93 10,0 0,11
9 119 81,73 48,7 1 0,89 0,81 0,93 9,24 0,11
10 109 72,32 43,47 1 0,89 0,8 0,93 8,64 0,12
11 103 65,06 39,71 1 0,89 0,8 0,92 8,16 0,13
12 94 59,73 36,74 1 0,89 0,8 0,92 7,79 0,13
13 87 55,7 34,57 1 0,88 0,79 0,92 7,5 0,13
14 85 52,46 32,76 1 0,88 0,8 0,92 7,26 0,14
15 79 50,33 31,56 1 0,88 0,78 0,92 7,03 0,14
16 79 48,57 30,44 1 0,87 0,78 0,92 6,86 0,14
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this random value. As aij = 0, j > μ, then we can assume
that

δ ≈ 1

mn

n∑
i=1

mi∑
j=μ+1

1.

Deviations from the average length by the value which is big-
ger than variance are unlikely, then mi−μ ≈ σ and δ ≈ σ/m.

From the given tables 7.3 and 7.4 it follows that the value
of degree of a strict avalanche is close to 1. Thus, the MV2
algorithm satisfies dependence criteria.

Statistical testing

Using the battery of Diehard tests, flags of long files have
been tested. The tests results allow for interpretation of flags
as ”random” sequences.

Core length

Deviation of expectation value of the core length from the
real one is less than 1 byte for short plaintext and 1% for the
long ones.

Flag length

Deviation of expectation value of the flags length from the
real one is less than 1 byte for short plaintext and 1% for the
long ones.
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Performance

During testing we made 100 encryptions of 200000 byte
pseudorandom sequence with different keys. The text module
has been compiled by MS VC 7.0 compiler. Testing was made
on a PC with a Pentium 4 processor, 1700MHz, RAM 256 MB,
266 MHz DDR, Windows XP. Encryption rate achieved was
≈ 5 MB/sec.

A compiler significantly impacts the algorithm’s imple-
mentation speed.
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The pseudocode
of the key schedule
of the MV2 cipher

A.1 Key schedule

of the cipher MV2-128

The key schedule of MV2 processes the initial 128-bit mas-
ter key into 32 256-byte subkeys. A subkey is a permutation
with values from 0 to 255.

The basic data unit in the scheduling is a 32 bit word.
The key scheduling algorithm extends 4-word (128-bit) key
key[0], key[1], key[2], key[3] into an array of words kx[0],
kx[1], . . . , kx[255]. Finally these words are translated into 32
key substitutions p[0, ·], p[1, ·], . . . p[31, ·] required by MV2.

The key schedule algorithm can be described by the
pseudo-code:
static long t[8]=
{ 0x726a8f3b, 0xe69a3b5c, 0xd3c71fe5, 0xab3c73d2,

0x4d3a8eb3, 0x0396d6e8, 0x3d4c2f7a, 0x9ee27cf3 };

144
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for(i = 0; i < 4; i + +)kx[i] = key[i];
for(i = 4; i < 256; i + +) {

s0 = g(kx[i − 1], kx[i − 2], t[0]);
s1 = g(kx[i − 1] ≪ 3, kx[i − 3], t[1]);
s2 = g(kx[i − 1] ≪ 7, kx[i − 4], t[2]);
s3 = g(kx[i − 2] ≪ 3, kx[i − 3] ≪ 3, t[3]);
s4 = g(kx[i − 2] ≪ 7, kx[i − 4] ≪ 3, t[4]);
s5 = g(kx[i − 3] ≪ 7, kx[i − 4] ≪ 7, t[5]);
s6 = g(kx[i − 1], kx[i − 2] ≪ 11, kx[i − 3] ≪ 17) + t[6] ≪

(s0 + s1 + s2)&15;
s7 = g(kx[i − 1] ≪ 2, kx[i − 2] ≪ 17, kx[i − 4]) + t[7] ≪

(s3 + s4 + s5)&15;
s8 = g(s2, s3, s4) ≪ 2;
s9 = g(s0, s5, s6) ≪ 11;
s10 = g(s1, s2 ≪ 14, s7) ≪ 13;
s11 = g(s3 ≪ 6, s4 ≪ 4, s5 ≪ 12) ≪ 9;
s12 = g(s0 ≪ 7, s1 ≪ 17, s6 ≫ 12) ≪ 3;
s13 = g(s2 ≪ 10, s4 ≪ 12, s7 ≪ 16) ≪ 7;
s14 = g(s0 ≪ 13, s3 ≪ 7, s5 ≪ 11) ≪ 16;
s15 = g(s1 ≪ 5, s6 ≪ 12, s7 ≪ 10) ≪ 5;
s3 = s8 ⊕ s9 ⊕ s10 ⊕ s11 ⊕ s12 ⊕ s13 ⊕ s14 ⊕ s15;
s3 = s3 + s3 ≪ 11;
s3 = s3 ⊕ s3 ≪ 5;
kx[i] = s3;

}
for (i=0;i¡256;i++) {

kx[i] = kx[i]⊕((kx[(i+23)&255])+kx[kx[(i+19)&255]&255]);
for (j=0;j¡32;j++)
p[j, i] = i;

}
for (i=255;i¿0;i– –) {

x = kx[i] + (kx[(i + 113)&255] ≪ 11);
for(j=0;j¡32;j++) {

k = (x&255)%(i + 1);
tmp = p[j, k];
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p[j, k] = p[j, i];
p[j, i] = tmp;
s0 = g(s0, s2, kx[i + j + 47] ≪ ((j + 3)&15));
s7 = g(s7, s1, kx[i + j + 59] ≪ ((j + 3)&15));
s4 = g(s4, s3, kx[i + j + 67] ≪ ((j + 3)&15));
s6 = g(s6, s5, kx[i + j + 73] ≪ ((j + 3)&15));
s2 = g(s2, s1, kx[i + j + 83] ≪ ((j + 3)&15));
s3 = g(s3, s5, kx[i + j + 97] ≪ ((j + 3)&15));
s5 = g(s5, s1, kx[i + j + 103] ≪ ((j + 3)&15));
s1 = g(s1, s0, kx[i + j + 109] ≪ ((j + 3)&15));
s3 = s3 − s0;
s6 = s6 + s2;
s7 = s7 ⊕ s5;
s1 = s1 − s4;
s0 = s0 − s7;
s4 = s4 ⊕ s6;
s2 = s2 + s3;
s5 = s3 + s1;
s1 = s1 + (s7 ≪ 11);
s3 = s3 ⊕ (s6 ≪ 17);
s2 = s2 − (s5 ≪ 13);
s0 = s0 + (s4 ≪ (s3&15));
s1 = s1 ⊕ s3;
s0 = s0 ⊕ (s2 ≪ 5);
x = x ∗ (x � 1) + (x � 17) ⊕ (kx[(i + j + 127)&255] ≪

(j&15)) ⊕ (s1 + s0);
}

}



Appendix A. Key schedule of the MV2 cipher 147

A.2 Key schedule

of the cipher MV2-256

The key schedule of MV2 processes the initial 256-bit master
key into 32 256-byte subkeys. A subkey is a permutation with
values from 0 to 255.

The basic data unit in the scheduling is a 32 bit word.
The key scheduling algorithm extends 8-word (256-bit) key
key[0], key[1], . . . , key[7] into an array of words kx[0], kx[1], . . . ,
kx[255]. Finally these words are translated into 32 key substitu-
tions p[0, ·], p[1, ·], . . . p[31, ·] required by MV2.

The key schedule algorithm can be described by the pseudo-
code:
static long t[8]=
{

0x726a8f3b, 0xe69a3b5c, 0xd3c71fe5, 0xab3c73d2,
0x4d3a8eb3, 0x0396d6e8, 0x3d4c2f7a, 0x9ee27cf3

};
for (i=0; i¡8; i++) kx[i]=key[i];
for (i=8;i¡256;i++) {

s0 = (((kx[i− 4]⊕ kx[i− 3])&kx[i− 2])⊕ kx[i− 3]) + t[0] +
kx[i − 1] ≪ 13;

s1 = (((kx[i− 8]⊕ kx[i− 7])&kx[i− 6])⊕ kx[i− 7]) + t[1] +
kx[i − 5] ≪ 13;

s2 = (((kx[i− 6]⊕ kx[i− 5])&kx[i− 4])⊕ kx[i− 5]) + t[2] +
kx[i − 3] ≪ 13;

s3 = (((kx[i− 1]⊕ kx[i− 2])&kx[i− 8])⊕ kx[i− 2]) + t[3] +
kx[i − 7] ≪ 13;

s4 = (((kx[i− 8]⊕ kx[i− 6])&kx[i− 4])⊕ kx[i− 6]) + t[4] +
kx[i − 2] ≪ 13;

s5 = (((kx[i− 7]⊕ kx[i− 5])&kx[i− 3])⊕ kx[i− 5]) + t[5] +
kx[i − 1] ≪ 7;

s6 = t[6] + kx[i − 7]kx[i − 4] ⊕ kx[i − 6]kx[i − 2] ⊕ kx[i −
5]kx[i − 3] ⊕ kx[i − 2]kx[i − 1] ⊕ kx[i − 1];
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s7 = t[7]+kx[i−8]kx[i−6]kx[i−4]kx[i−2]⊕kx[i−8]kx[i−
7]⊕kx[i−6]kx[i−5]⊕kx[i−5]kx[i−4]⊕kx[i−3]kx[i−2]⊕kx[i−4];

s8 = g(s2, s3, s4) ≪ 2;
s9 = g(s0, s5, s6) ≪ 11;
s10 = g(s1, s2 ≪ 14, s7) ≪ 13;
s11 = g(s3 ≪ 6, s4 ≪ 4, s5 ≪ 12) ≪ 9;
s12 = g(s0 ≪ 7, s1 ≪ 17, s6 ≫ 12) ≪ 3;
s13 = g(s2 ≪ 10, s4 ≪ 12, s7 ≪ 16) ≪ 7;
s14 = g(s0 ≪ 13, s3 ≪ 7, s5 ≪ 11) ≪ 16;
s15 = g(s1 ≪ 5, s6 ≪ 12, s7 ≪ 10) ≪ 5;
s3 = s8 ⊕ s9 ⊕ s10 ⊕ s11 ⊕ s12 ⊕ s13 ⊕ s14 ⊕ s15;
s3 = s3 + s3 ≪ 11;
s3 = s3 ⊕ s3 ≪ 5;
kx[i] = s3;

}
for (i=0;i¡256;i++) {

kx[i] = kx[i]⊕((kx[(i+23)&255])+kx[kx[(i+19)&255]&255]);
for (j=0;j¡32;j++)
p[j, i] = i;

}
for (i=255;i¿0;i– –) {

x = kx[i] + (kx[(i + 113)&255] ≪ 11);
for(j=0;j¡32;j++) {

k = (x&255)%(i + 1);
tmp = p[j, k];
p[j, k] = p[j, i];
p[j, i] = tmp;
s0 = g(s0, s2, kx[i + j + 47] ≪ ((j + 3)&15));
s7 = g(s7, s1, kx[i + j + 59] ≪ ((j + 3)&15));
s4 = g(s4, s3, kx[i + j + 67] ≪ ((j + 3)&15));
s6 = g(s6, s5, kx[i + j + 73] ≪ ((j + 3)&15));
s2 = g(s2, s1, kx[i + j + 83] ≪ ((j + 3)&15));
s3 = g(s3, s5, kx[i + j + 97] ≪ ((j + 3)&15));
s5 = g(s5, s1, kx[i + j + 103] ≪ ((j + 3)&15));
s1 = g(s1, s0, kx[i + j + 109] ≪ ((j + 3)&15));
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s3 = s3 − s0;
s6 = s6 + s2;
s7 = s7 ⊕ s5;
s1 = s1 − s4;
s0 = s0 − s7;
s4 = s4 ⊕ s6;
s2 = s2 + s3;
s5 = s3 + s1;
s1 = s1 + (s7 ≪ 11);
s3 = s3 ⊕ (s6 ≪ 17);
s2 = s2 − (s5 ≪ 13);
s0 = s0 + (s4 ≪ (s3&15));
s1 = s1 ⊕ s3;
s0 = s0 ⊕ (s2 ≪ 5);
x = x ∗ (x � 1) + (x � 17) ⊕ (kx[(i + j + 127)&255] ≪

(j&15)) ⊕ (s1 + s0);
}

}

A.3 Key schedule

of the cipher MV2-512

The key schedule of MV2 processes the initial 512-bit master
key into 32 256-byte subkeys. A subkey is a permutation with
values from 0 to 255.

The basic data unit in the scheduling is a 32 bit word.
The key scheduling algorithm extends 16-word (512-bit) key
key[0], key[1], . . . , key[15] into an array of words kx[0], kx[1], . . . ,
kx[255]. Finally these words are translated into 32 key substitu-
tions p[0, ·], p[1, ·], . . . p[31, ·] required by MV2.

The key schedule algorithm can be described by the pseudo-
code:
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static long t[8]=
{

0x726a8f3b, 0xe69a3b5c, 0xd3c71fe5, 0xab3c73d2,
0x4d3a8eb3, 0x0396d6e8, 0x3d4c2f7a, 0x9ee27cf3

};
for (i=0;i¡16;i++) kx[i]=key[i];
for (i=16;i¡256;i++) {

s0 = (((kx[i− 4]⊕ kx[i− 3])&kx[i− 2])⊕ kx[i− 3]) + t[0] +
kx[i − 1] ≪ 3;

s1 = (((kx[i− 8]⊕ kx[i− 7])&kx[i− 6])⊕ kx[i− 7]) + t[1] +
kx[i − 5] ≪ 3;

s2 = (((kx[i − 12] ⊕ kx[i − 11])&kx[i − 10]) ⊕ kx[i − 11]) +
t[2] + kx[i − 9] ≪ 3;

s3 = (((kx[i − 16] ⊕ kx[i − 15])&kx[i − 14]) ⊕ kx[i − 15]) +
t[3] + kx[i − 13] ≪ 3;

s4 = (((kx[i− 6]⊕ kx[i− 5])&kx[i− 4])⊕ kx[i− 5]) + t[4] +
kx[i − 3] ≪ 13;

s5 = (((kx[i− 10]⊕ kx[i− 9])&kx[i− 8])⊕ kx[i− 9])+ t[5]+
kx[i − 8] ≪ 13;

s6 = (((kx[i − 14] ⊕ kx[i − 13])&kx[i − 12]) ⊕ kx[i − 13]) +
t[6] + kx[i − 12] ≪ 13;

s7 = (((kx[i − 16] ⊕ kx[i − 15])&kx[i − 2]) ⊕ kx[i − 15]) +
t[7] + kx[i − 1] ≪ 13;

s8 = g(s2, s3, s4) ≪ 2;
s9 = g(s0, s5, s6) ≪ 11;
s10 = g(s1, s2 ≪ 14, s7) ≪ 13;
s11 = g(s3 ≪ 6, s4 ≪ 4, s5 ≪ 12) ≪ 9;
s12 = g(s0 ≪ 7, s1 ≪ 17, s6 ≪ 20) ≪ 3;
s13 = g(s2 ≪ 10, s4 ≪ 12, s7 ≪ 16) ≪ 7;
s14 = g(s0 ≪ 13, s3 ≪ 7, s5 ≪ 11) ≪ 16;
s15 = g(s1 ≪ 5, s6 ≪ 12, s7 ≪ 10) ≪ 5;
s3 = s8 ⊕ s9 ⊕ s10 ⊕ s11 ⊕ s12 ⊕ s13 ⊕ s14 ⊕ s15;
s3 = s3 + s3 ≪ 11;
s3 = s3 ⊕ s3 ≪ 5;
kx[i] = s3;
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}
for (i=0;i¡256;i++) {

kx[i] = kx[i]⊕((kx[(i+23)&255])+kx[kx[(i+19)&255]&255]);
for (j=0;j¡32;j++)
p[j, i] = i;

}
for (i=255;i¿0;i) {

x = kx[i] + (kx[(i + 113)&255] ≪ 11);
for (j=0;j¡32;j++) {

k = (x&255)%(i + 1);
tmp = p[j, k];
p[j, k] = p[j, i];
p[j, i] = tmp;
s0 = g(s0, s2, kx[(i + j + 47)&255] ≪ ((j + 3)&15));
s7 = g(s7, s1, kx[(i + j + 59)&255] ≪ ((j + 3)&15));
s4 = g(s4, s3, kx[(i + j + 67)&255] ≪ ((j + 3)&15));
s6 = g(s6, s5, kx[(i + j + 73)&255] ≪ ((j + 3)&15));
s2 = g(s2, s1, kx[(i + j + 83)&255] ≪ ((j + 3)&15));
s3 = g(s3, s5, kx[(i + j + 97)&255] ≪ ((j + 3)&15));
s5 = g(s5, s1, kx[(i + j + 103)&255] ≪ ((j + 3)&15));
s1 = g(s1, s0, kx[(i + j + 109)&255] ≪ ((j + 3)&15));
s3 = s3 − s0;
s6 = s6 + s2;
s7 = s7 ⊕ s5;
s1 = s1 − s4;
s0 = s0 − s7;
s4 = s4 ⊕ s6;
s2 = s2 + s3;
s5 = s3 + s1;
s1 = s1 + (s7 ≪ 11);
s3 = s3 ⊕ (s6 ≪ 17);
s2 = s2 − (s5 ≪ 13);
s0 = s0 + (s4 ≪ (s3&15));
s1 = s1 ⊕ s3;
s0 = s0 ⊕ (s2 ≪ 5);
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x = x ∗ (x � 1) + (x � 17) ⊕ (kx[(i + j + 127)&255] ≪
(j&15)) ⊕ (s1 + s0);

}
}

A.4 Key schedule

of the cipher MV2-1024

The key schedule of MV2 processes the initial 1024-bit master key
into 32 256-byte subkeys. A subkey is a permutation with values
from 0 to 255.

The basic data unit in the scheduling is a 32 bit word.
The key scheduling algorithm extends 32-word (1024-bit) key
key[0], key[1], . . . , key[31] into an array of words kx[0], kx[1], . . . ,
kx[255]. Finally these words are translated into 32 key substitu-
tions p[0, ·], p[1, ·], . . . p[31, ·] required by MV2.

The key schedule algorithm can be described by the pseudo-
code:
static long t[8]=
{

0x726a8f3b, 0xe69a3b5c, 0xd3c71fe5, 0xab3c73d2,
0x4d3a8eb3, 0x0396d6e8, 0x3d4c2f7a, 0x9ee27cf3

};
for (i=0;i¡32;i++) kx[i]=key[i];
for (i=32;i¡256;i++) {

s0 = (((kx[i− 4]⊕ kx[i− 3])&kx[i− 2])⊕ kx[i− 3]) + t[0] +
kx[i − 1] ≪ 3;

s1 = (((kx[i− 8]⊕ kx[i− 7])&kx[i− 6])⊕ kx[i− 7]) + t[1] +
kx[i − 5] ≪ 3;

s2 = (((kx[i − 12] ⊕ kx[i − 11])&kx[i − 10]) ⊕ kx[i − 11]) +
t[2] + kx[i − 9] ≪ 3;

s3 = (((kx[i − 16] ⊕ kx[i − 15])&kx[i − 14]) ⊕ kx[i − 15]) +
t[3] + kx[i − 13] ≪ 3;
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s4 = (((kx[i− 6]⊕ kx[i− 5])&kx[i− 4])⊕ kx[i− 5]) + t[4] +
kx[i − 3] ≪ 13;

s5 = (((kx[i− 10]⊕ kx[i− 9])&kx[i− 8])⊕ kx[i− 9])+ t[5]+
kx[i − 8] ≪ 13;

s6 = (((kx[i − 14] ⊕ kx[i − 13])&kx[i − 12]) ⊕ kx[i − 13]) +
t[6] + kx[i − 12] ≪ 13;

s7 = (((kx[i − 16] ⊕ kx[i − 15])&kx[i − 2]) ⊕ kx[i − 15]) +
t[7] + kx[i − 1] ≪ 13;

s14 = g(kx[i − 14], kx[i − 13], kx[i − 12]);
s8 = (g(kx[i−32], kx[i−31], kx[i−30])+g(s2, s3, s4)) ≪ 2;
s9 = (g(kx[i−29], kx[i−28], kx[i−27])+g(s0, s5, s6)) ≪ 11;
s10 = (g(kx[i − 26], kx[i − 25], kx[i − 24]) + g(s1, s2 ≪

14, s7)) ≪ 13;
s11 = (g(kx[i−23], kx[i−22], kx[i−21])+ g(s3 ≪ 6, s4 ≪

4, s5 ≪ 12)) ≪ 9;
s12 = (g(kx[i−20], kx[i−19], kx[i−18])+ g(s0 ≪ 7, s1 ≪

17, s6 ≪ 20)) ≪ 3;
s13 = (g(kx[i−17], kx[i−32], kx[i−21])+g(s2 ≪ 10, s4 ≪

12, s7 ≪ 16)) ≪ 7;
s14 = (g(kx[i−17], kx[i−16], kx[i−15])+g(s0 ≪ 13, s3 ≪

7, s5 ≪ 11)) ≪ 16;
s15 = (g(kx[i − 16], kx[i − 31], kx[i − 1]) + g(s1 ≪ 5, s6 ≪

12, s7 ≪ 10)) ≪ 5;
s3 = s8 ⊕ s9 ⊕ s10 ⊕ s11 ⊕ s12 ⊕ s13 ⊕ s14 ⊕ s15;
s3 = s3 + s3 ≪ 11;
s3 = s3 ⊕ s3 ≪ 5;
kx[i] = s3;

}
for (i=0;i¡256;i++) {

kx[i] = kx[i]⊕((kx[(i+23)&255])+kx[kx[(i+19)&255]&255]);
for (j=0;j¡32;j++)
p[j, i] = i;

}
for (i=255;i¿0;i–) {

x = kx[i] + (kx[(i + 113)&255] ≪ 11);
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for (j=0;j¡32;j++) {
k = (x&255)%(i + 1);
tmp = p[j, k];
p[j, k] = p[j, i];
p[j, i] = tmp;
s0 = g(s0, s2, kx[(i + j + 47)&255] ≪ ((j + 3)&15));
s7 = g(s7, s1, kx[(i + j + 59)&255] ≪ ((j + 3)&15));
s4 = g(s4, s3, kx[(i + j + 67)&255] ≪ ((j + 3)&15));
s6 = g(s6, s5, kx[(i + j + 73)&255] ≪ ((j + 3)&15));
s2 = g(s2, s1, kx[(i + j + 83)&255] ≪ ((j + 3)&15));
s3 = g(s3, s5, kx[(i + j + 97)&255] ≪ ((j + 3)&15));
s5 = g(s5, s1, kx[(i + j + 103)&255] ≪ ((j + 3)&15));
s1 = g(s1, s0, kx[(i + j + 109)&255] ≪ ((j + 3)&15));
s3 = s3 − s0;
s6 = s6 + s2;
s7 = s7 ⊕ s5;
s1 = s1 − s4;
s0 = s0 − s7;
s4 = s4 ⊕ s6;
s2 = s2 + s3;
s5 = s3 + s1;
s1 = s1 + (s7 ≪ 11);
s3 = s3 ⊕ (s6 ≪ 17);
s2 = s2 − (s5 ≪ 13);
s0 = s0 + (s4 ≪ (s3&15));
s1 = s1 ⊕ s3;
s0 = s0 ⊕ (s2 ≪ 5);
x = x ∗ (x � 1) + (x � 17) ⊕ (kx[(i + j + 127)&255] ≪

(j&15)) ⊕ (s1 + s0);
}

}
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A.5 Key schedule

of the cipher MV2-2048

The key schedule of MV2 processes the initial 2048-bit master
key into 32 256-byte subkeys. A subkey is a permutation with
values from 0 to 255.

The basic data unit in the scheduling is a 32 bit word.
The key scheduling algorithm extends 64-word (2048-bit) key
key[0], key[1], . . . , key[63] into an array of words kx[0], kx[1], . . . ,
kx[255]. Finally these words are translated into 32 key substitu-
tions
p[0, ·], p[1, ·], . . . p[31, ·] required by MV2.

The key schedule algorithm can be described by the pseudo-
code:
static long t[8]=
{

0x726a8f3b, 0xe69a3b5c, 0xd3c71fe5, 0xab3c73d2,
0x4d3a8eb3, 0x0396d6e8, 0x3d4c2f7a, 0x9ee27cf3

};
for (i=0;i¡64;i++) kx[i]=key[i];
for (i=64;i¡256;i++) {

s0 = (((kx[i− 5]⊕ kx[i− 4])&kx[i− 3])⊕ kx[i− 2]) + t[0] +
kx[i − 1] ≪ 3;

s1 = (((kx[i− 10]⊕ kx[i− 9])&kx[i− 8])⊕ kx[i− 7])+ t[1]+
kx[i − 6] ≪ 3;

s2 = (((kx[i − 15] ⊕ kx[i − 14])&kx[i − 13]) ⊕ kx[i − 12]) +
t[2] + kx[i − 11] ≪ 3;

s3 = (((kx[i − 20] ⊕ kx[i − 19])&kx[i − 18]) ⊕ kx[i − 17]) +
t[3] + kx[i − 16] ≪ 3;

s4 = (((kx[i − 25] ⊕ kx[i − 24])&kx[i − 23]) ⊕ kx[i − 22]) +
t[4] + kx[i − 21] ≪ 13;

s5 = (((kx[i − 30] ⊕ kx[i − 29])&kx[i − 28]) ⊕ kx[i − 27]) +
t[5] + kx[i − 26] ≪ 13;

s6 = (((kx[i − 35] ⊕ kx[i − 34])&kx[i − 33]) ⊕ kx[i − 32]) +



156 MV2 cryptographic algorithm

t[6] + kx[i − 31] ≪ 13;
s7 = (((kx[i − 40] ⊕ kx[i − 39])&kx[i − 38]) ⊕ kx[i − 37]) +

t[7] + kx[i − 36] ≪ 13;
s8 = (g(kx[i−43], kx[i−42], kx[i−41])+g(s2, s3, s4)) ≪ 2;
s9 = (g(kx[i−46], kx[i−45], kx[i−44])+g(s0, s5, s6)) ≪ 11;
s10 = (g(kx[i − 49], kx[i − 48], kx[i − 47]) + g(s1, s2 ≪

14, s7)) ≪ 13;
s11 = (g(kx[i−52], kx[i−51], kx[i−50])+ g(s3 ≪ 6, s4 ≪

4, s5 ≪ 12)) ≪ 9;
s12 = (g(kx[i−55], kx[i−54], kx[i−53])+ g(s0 ≪ 7, s1 ≪

17, s6 ≪ 20)) ≪ 3;
s13 = (g(kx[i−58], kx[i−57], kx[i−56])+g(s2 ≪ 10, s4 ≪

12, s7 ≪ 16)) ≪ 7;
s14 = (g(kx[i−61], kx[i−60], kx[i−59])+g(s0 ≪ 13, s3 ≪

7, s5 ≪ 11)) ≪ 16;
s15 = (g(kx[i−64], kx[i−63], kx[i−62])+ g(s1 ≪ 5, s6 ≪

12, s7 ≪ 10)) ≪ 5;
s3 = s8 ⊕ s9 ⊕ s10 ⊕ s11 ⊕ s12 ⊕ s13 ⊕ s14 ⊕ s15;
s3 = s3 + s3 ≪ 11;
s3 = s3 ⊕ s3 ≪ 5;
kx[i] = s3;

}
for (i=0;i¡256;i++) {

kx[i] = kx[i]⊕((kx[(i+23)&255])+kx[kx[(i+19)&255]&255]);
for (j=0;j¡32;j++)
p[j, i] = i;

}
for (i=255;i¿0;i–) {

x = kx[i] + (kx[(i + 113)&255] ≪ 11);
for (j=0;j¡32;j++) {

k = (x&255)%(i + 1);
tmp = p[j, k];
p[j, k] = p[j, i];
p[j, i] = tmp;
s0 = g(s0, s2, kx[(i + j + 47)&255] ≪ ((j + 3)&15));
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s7 = g(s7, s1, kx[(i + j + 59)&255] ≪ ((j + 3)&15));
s4 = g(s4, s3, kx[(i + j + 67)&255] ≪ ((j + 3)&15));
s6 = g(s6, s5, kx[(i + j + 73)&255] ≪ ((j + 3)&15));
s2 = g(s2, s1, kx[(i + j + 83)&255] ≪ ((j + 3)&15));
s3 = g(s3, s5, kx[(i + j + 97)&255] ≪ ((j + 3)&15));
s5 = g(s5, s1, kx[(i + j + 103)&255] ≪ ((j + 3)&15));
s1 = g(s1, s0, kx[(i + j + 109)&255] ≪ ((j + 3)&15));
s3 = s3 − s0;
s6 = s6 + s2;
s7 = s7 ⊕ s5;
s1 = s1 − s4;
s0 = s0 − s7;
s4 = s4 ⊕ s6;
s2 = s2 + s3;
s5 = s3 + s1;
s1 = s1 + (s7 ≪ 11);
s3 = s3 ⊕ (s6 ≪ 17);
s2 = s2 − (s5 ≪ 13);
s0 = s0 + (s4 ≪ (s3&17);
s1 = s1 ⊕ s3;
s0 = s0 ⊕ (s2 ≪ 5);
x = x ∗ (x � 1) + (x � 17) ⊕ (kx[(i + j + 127)&255] ≪

(j&15)) ⊕ (s1 + s0);
}

}
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A.6 Avalanche characteristics

of key schedules

In this section we present the results of the statistical testing
performed on our proposed key schedules.

For the results of this section, we generated four sets of 2000
keys for each length of keys and tested each key for avalanche prop-
erties. The set of 2000 keys was generated by using the physical
random number generator. For each set of 2000 keys, and for each
property, we report the mean, standard deviation, and minimum
and maximum of the values obtained.

Table A.1: Avalanche results for 2000 randomly generated keys

Key size degree of degree of strict
avalanche effect avalanche criterion

256 0,99783 0,99541
512 0,99569 0,99342
1024 0,99655 0,99442
2048 0,99925 0,99659

The values for our key schedules (Table A.1) are close to the
theoretical values.

We have done dependencies tests for MV2 cipher functions
mapping the key space to the ciphertext space under fixed 256-
bytes inputs. For each variant of key size we select a fixed 256-
byte input and encrypt it with 3200 randomly chosen keys. These
examinations are carried out for various numbers of rounds, from 1
round to the 16-th rounds. Keys were taken from a file containing
a sequence generated by a physical random number generator.
The testing results for key lengths of 256, 512, 1024 and 2048
bits are shows on Fig.A.1(lines 1-4) . The line 5 on Fig. A.1 is
supplied for compare. This line corresponds to the degree of SAC
for the function from the plaintext space to the ciphertext space
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under a randomly fixed key and 3200 randomly selected 256-bytes
plaintexts.
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Figure A.1: Degrees of SAC for different length of key.

The test results for the standard avalanche properties of key
schedules suggest that our key schedules have cryptographically
good randomness properties. Not only do the subkeys generated
perform well when tested for the standard avalanche properties,
but there is evidence that the subkeys are not pairwise correlated.
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